Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neuroanat ; 18: 1411154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957435

RESUMO

Introduction: Extraocular muscles are innervated by two anatomically and histochemically distinct motoneuron populations: motoneurons of multiply-innervated fibers (MIF), and of singly-innervated fibers (SIF). Recently, it has been established by our research group that these motoneuron types of monkey abducens and trochlear nuclei express distinct ion channel profiles: SIF motoneurons, as well as abducens internuclear neurons (INT), express strong Kv1.1 and Kv3.1b immunoreactivity, indicating their fast-firing capacity, whereas MIF motoneurons do not. Moreover, low voltage activated cation channels, such as Cav3.1 and HCN1 showed differences between MIF and SIF motoneurons, indicating distinct post-inhibitory rebound characteristics. However, the ion channel profiles of MIF and SIF motoneurons have not been established in human brainstem tissue. Methods: Therefore, we used immunohistochemical methods with antibodies against Kv, Cav3 and HCN channels to (1) examine the human trochlear nucleus in terms of anatomical organization of MIF and SIF motoneurons, (2) examine immunolabeling patterns of ion channel proteins in the distinct motoneurons populations in the trochlear and abducens nuclei. Results: In the examination of the trochlear nucleus, a third motoneuron subgroup was consistently encountered with weak perineuronal nets (PN). The neurons of this subgroup had -on average- larger diameters than MIF motoneurons, and smaller diameters than SIF motoneurons, and PN expression strength correlated with neuronal size. Immunolabeling of various ion channels revealed that, in general, human MIF and SIF motoneurons did not differ consistently, as opposed to the findings in monkey trochlear and abducens nuclei. Kv1.1, Kv3.1b and HCN channels were found on both MIF and SIF motoneurons and the immunolabeling density varied for multiple ion channels. On the other hand, significant differences between SIF motoneurons and INTs were found in terms of HCN1 immunoreactivity. Discussion: These results indicated that motoneurons may be more variable in human in terms of histochemical and biophysiological characteristics, than previously thought. This study therefore establishes grounds for any histochemical examination of motor nuclei controlling extraocular muscles in eye movement related pathologies in the human brainstem.

2.
J Neurol Sci ; 439: 120328, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780635

RESUMO

Bursting behavior of brainstem premotor burst neurons (BNs) is essential for initiation of saccades and calibrating their metrics. Several ion channel families such as voltage-gated potassium (Kv) channels, low-voltage-activated calcium (Cav3) channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are major regulators of the bursting in neurons. Therefore, it was speculated that ion channels with rapid kinematics are essential for characteristic firing patterns of the BNs and rapid saccade velocities. However, the expression patterns of ion channels are yet to be confirmed. Confirmation would not only support the neuromimetic model predictions for saccade generation in brainstem, but also contemporary views that channelopathies can cause saccade disorders in humans. As proof of concept, we examined excitatory BNs in the rostral interstitial nucleus of medial longitudinal fasciculus (RIMLF, vertical saccades) and inhibitory BNs in nucleus paragigantocellularis dorsalis (PGD, horizontal saccades) histochemically in macaque monkeys. We found strong expression of Kv channels, which enable rapid-firing, as well as HCN1&2 and Cav3.2&3.3, which enable post-inhibitory rebound bursting, in both BN populations. Moreover, PGD was found to host multiple neuron groups in terms of calretinin immunoreactivity. Our results provide histochemical evidence that supports models proposing post-inhibitory rebound facilitates bursting in BNs. Furthermore, our findings support the notion that deductions can be made about electrophysiological firing properties by histochemical examination of functional groups within the brainstem saccadic circuitry. This development is an important building block supporting the concept of channelopathies in saccadic disorders. Future histological studies in humans will confirm this approach for saccadic disorders.


Assuntos
Canalopatias , Movimentos Sacádicos , Animais , Humanos , Macaca mulatta , Neurônios/fisiologia , Nervo Oculomotor
3.
Cerebellum ; 20(5): 701-716, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33083961

RESUMO

The Y-group plays an important role in the generation of upward smooth pursuit eye movements and contributes to the adaptive properties of the vertical vestibulo-ocular reflex. Malfunction of this circuitry may cause eye movement disorders, such as downbeat nystagmus. To characterize the neuron populations in the Y-group, we performed immunostainings for cellular proteins related to firing characteristics and transmitters (calretinin, GABA-related proteins and ion channels) in brainstem sections of macaque monkeys that had received tracer injections into the oculomotor nucleus. Two histochemically different populations of premotor neurons were identified: The calretinin-positive population represents the excitatory projection to contralateral upgaze motoneurons, whereas the GABAergic population represents the inhibitory projection to ipsilateral downgaze motoneurons. Both populations receive a strong supply by GABAergic nerve endings most likely originating from floccular Purkinje cells. All premotor neurons express nonphosphorylated neurofilaments and are ensheathed by strong perineuronal nets. In addition, they contain the voltage-gated potassium channels Kv1.1 and Kv3.1b which suggests biophysical similarities to high-activity premotor neurons of vestibular and oculomotor systems. The premotor neurons of Y-group form a homogenous population with histochemical characteristics compatible with fast-firing projection neurons that can also undergo plasticity and contribute to motor learning as found for the adaptation of the vestibulo-ocular reflex in response to visual-vestibular mismatch stimulation. The histochemical characterization of premotor neurons in the Y-group allows the identification of the homologue cell groups in human, including their transmitter inputs and will serve as basis for correlated anatomical-neuropathological studies of clinical cases with downbeat nystagmus.


Assuntos
Movimentos Oculares , Vestíbulo do Labirinto , Animais , Haplorrinos , Neurônios Motores/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia
4.
Prog Brain Res ; 249: 117-123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31325972

RESUMO

Potassium (K+) channels are major contributors to fast and precise action potential generation. The aim of this study was to establish the immunoreactivity profile of several potassium channels in omnipause neurons (OPNs), which play a central role in premotor saccadic circuitry. To accomplish this, we histochemically examined monkey and human brainstem sections using antibodies against the voltage gated K+-channels KV1.1, KV3.1b and K+-Cl- cotransporter (KCC2). We found that OPNs of both species were positive for all three K+-antibodies and that the staining patterns were similar for both species. In individual OPNs, KV3.1b was detected on the somatic membrane and proximal dendrites, while KV1.1 was mainly confined to soma. Further, KCC2 immunoreactivity was strong in distal dendrites, but was weak in the somatic membrane. Our findings allow the speculation that the alterations in K+-channel expression in OPNs could be the underlying mechanism for several saccadic disorders through neuronal and circuit-level malfunction.


Assuntos
Tronco Encefálico/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Movimentos Sacádicos/fisiologia , Simportadores/metabolismo , Animais , Tronco Encefálico/metabolismo , Dendritos/fisiologia , Humanos , Imuno-Histoquímica , Macaca mulatta , Macaca nemestrina , Rede Nervosa/metabolismo , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/imunologia , Simportadores/imunologia , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA