RESUMO
Mycobacterium tuberculosis (Mtb) exposure leads to a range of outcomes including clearance, latent TB infection (LTBI), and pulmonary tuberculosis (TB). Some heavily exposed individuals resist tuberculin skin test (TST) and interferon-gamma (IFNγ) release assay (IGRA) conversion (RSTR), which suggests that they employ IFNγ-independent mechanisms of Mtb control. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. Chromatin accessibility did not differ between uninfected RSTR and LTBI monocytes. By contrast, methylation significantly differed at 174 CpG sites and across 63 genomic regions. Consistent with previous transcriptional findings in this cohort, differential methylation was enriched in lipid- and cholesterol-associated pathways including the genes APOC3, KCNQ1, and PLA2G3. In addition, methylation was enriched in Hippo signaling, which is associated with cholesterol homeostasis and includes CIT and SHANK2. Lipid export and Hippo signaling pathways were also associated with gene expression in response to Mtb in RSTR as well as IFN stimulation in monocyte-derived macrophages (MDMs) from an independent healthy donor cohort. Moreover, serum-derived high-density lipoprotein from RSTR had elevated ABCA1-mediated cholesterol efflux capacity (CEC) compared to LTBI. Our findings suggest that resistance to TST/IGRA conversion is linked to regulation of lipid accumulation in monocytes, which could facilitate early Mtb clearance among RSTR subjects through IFNγ-independent mechanisms.IMPORTANCETuberculosis (TB) remains an enduring global health challenge with millions of deaths and new cases each year. Despite recent advances in TB treatment, we lack an effective vaccine or a durable cure. While heavy exposure to Mycobacterium tuberculosis often results in latent TB latent infection (LTBI), subpopulations exist that are either resistant to infection or contain Mtb with interferon-gamma (IFNγ)-independent mechanisms not indicative of LTBI. These resisters provide an opportunity to investigate the mechanisms of TB disease and discover novel therapeutic targets. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. We identify methylation signatures in host lipid and cholesterol pathways with potential relevance to early TB clearance before the sustained IFN responses indicative of LTBI. This adds to a growing body of literature linking TB disease outcomes to host lipids.
Assuntos
Epigênese Genética , Tuberculose Latente , Metabolismo dos Lipídeos , Mycobacterium tuberculosis , Humanos , Metabolismo dos Lipídeos/genética , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Tuberculose Latente/genética , Tuberculose Latente/metabolismo , Masculino , Adulto , Feminino , Teste Tuberculínico , Testes de Liberação de Interferon-gama , Monócitos/metabolismo , Monócitos/imunologia , Metilação de DNA , Uganda/epidemiologia , Estudos de CoortesRESUMO
A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.
Assuntos
Linfócitos T CD4-Positivos , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/imunologia , Humanos , Animais , Adolescente , Tuberculose/imunologia , Tuberculose/microbiologia , Linfócitos T CD4-Positivos/imunologia , Células Th17/imunologia , Feminino , Macaca mulatta , Masculino , Fenótipo , Interferon gama/metabolismo , Interferon gama/imunologia , Antígenos de Bactérias/imunologia , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , África do Sul , Adulto Jovem , Linfócitos T Reguladores/imunologia , AdultoRESUMO
BACKGROUND: Mortality benefit of transfusion with leucoreduced whole blood has not been demonstrated in the sub-Saharan Africa (SSA). We compared mortality in patients with cancer transfused with leucoreduced and non-leucoreduced whole blood in a SSA setting. METHODS: An open-label randomized controlled trial was conducted at the Uganda Cancer Institute where participants were randomized in a 1:1 ratio into the leucoreduced and non-leucoreduced whole blood transfusion arms. Leucocyte filtration of whole blood was performed within 72 h of blood collection. Patients aged ≥ 15 years who were prescribed blood transfusion by the primary physicians were eligible for study enrolment. Mortality difference was analyzed using intention-to-treat survival analysis and cox proportional hazard model was used to analyze factors associated with mortality. RESULTS: There were 137 participants randomized to the leucoreduced and 140 to the non-leucoreduced arms. Baseline characteristics were similar between the two arms. The median number of blood transfusions received was 1 (IQR, 1-3) unit and 2 (IQR, 1-3) units in the leucoreduced and non-leucoreduced arms respectively, p = 0.07. The 30-day mortality rate in the leucoreduced arm was 4.6% (95% CI, 2.1-10) and was 6.2% (95% CI, 3.2-12.1) in the non-leucoreduced arm (p = 0.57), representing an absolute effect size of only 1.6%. Increasing age (HR = 0.92, 95% CI, 0.86-0.98, p = 0.02) and Eastern Co-operative Oncology Group (ECOG) performance score of 1 (HR = 0.03, 95% CI, 0.00-0.31, p < 0.01) were associated with reduced 30-day mortality. CONCLUSIONS: The study failed to demonstrate mortality difference between cancer patients transfused with leucoreduced and non-leucoreduced whole blood. Although this study does not support nor refute universal leucoreduction to reduce mortality in patients with cancer in SSA, it demonstrates the feasibility of doing transfusion RCTs in Uganda, where a multi-center trial with an appropriate sample size is needed. TRIAL REGISTRATION: Pan African Clinical Trial Registry, https://pactr.samrc.ac.za/ (PACTR202302787440132). Registered on 06/02/2023.
Assuntos
Transfusão de Sangue , Neoplasias , Humanos , Masculino , Feminino , Uganda/epidemiologia , Pessoa de Meia-Idade , Neoplasias/mortalidade , Neoplasias/terapia , Transfusão de Sangue/métodos , Transfusão de Sangue/estatística & dados numéricos , Adulto , Idoso , Procedimentos de Redução de Leucócitos/métodos , Modelos de Riscos ProporcionaisRESUMO
Mycobacterium tuberculosis remains one of the deadliest infectious agents globally. Amidst efforts to control TB, long treatment duration, drug toxicity, and resistance underscore the need for novel therapeutic strategies. Despite advances in understanding the interplay between microbiome and disease in humans, the specific role of the microbiome in predicting disease susceptibility and discriminating infection status in tuberculosis still needs to be fully investigated. We investigated the impact of M.tb infection and M.tb-specific IFNγ immune responses on airway microbiome diversity by performing TB GeneXpert and QuantiFERON-GOLD assays during the follow-up phase of a longitudinal HIV-Lung Microbiome cohort of individuals recruited from two large independent cohorts in rural Uganda. M.tb rather than IFNγ immune response mainly drove a significant reduction in airway microbiome diversity. A microbiome signature comprising Streptococcus, Neisseria, Fusobacterium, Prevotella, Schaalia, Actinomyces, Cutibacterium, Brevibacillus, Microbacterium, and Beijerinckiacea accurately discriminated active TB from Latent TB and M.tb-uninfected individuals.
RESUMO
T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.
Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/imunologia , Uganda , Adulto , Masculino , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/genética , Feminino , Tuberculose/imunologia , Tuberculose/microbiologia , Linfócitos T/imunologia , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Células Clonais/imunologia , Resistência à Doença/imunologia , Resistência à Doença/genética , Adulto Jovem , Antígenos de Histocompatibilidade Classe IRESUMO
Antibody features vary with tuberculosis (TB) disease state. Whether clinical variables, such as age or sex, influence associations between Mycobacterium tuberculosis-specific antibody responses and disease state is not well explored. Here we profiled Mycobacterium tuberculosis-specific antibody responses in 140 TB-exposed South African individuals from the Adolescent Cohort Study. We identified distinct response features in individuals progressing to active TB from non-progressing, matched controls. A multivariate antibody score differentially associated with progression (SeroScore) identified progressors up to 2 years before TB diagnosis, earlier than that achieved with the RISK6 transcriptional signature of progression. We validated these antibody response features in the Grand Challenges 6-74 cohort. Both the SeroScore and RISK6 correlated better with risk of TB progression in adolescents compared with adults, and in males compared with females. This suggests that age and sex are important, underappreciated modifiers of antibody responses associated with TB progression.
Assuntos
Anticorpos Antibacterianos , Progressão da Doença , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/imunologia , Masculino , Feminino , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Adolescente , Tuberculose/imunologia , Tuberculose/microbiologia , Fatores Sexuais , Adulto , Fatores Etários , África do Sul/epidemiologia , Adulto Jovem , Estudos de Coortes , Formação de Anticorpos/imunologiaRESUMO
Reductions in tuberculosis (TB) incidence require identification of individuals at high risk of developing active disease, such as those with recent Mycobacterium tuberculosis (Mtb) infection. Using a prospective household contact (HHC) study in Kampala, Uganda, we diagnosed new Mtb infection using both the tuberculin skin test (TST) and interferon-gamma release assay (IGRA). Our study aimed to determine if the TST adds additional value to the characterization of IGRA converters. We identified 13 HHCs who only converted the IGRA (QFT-only converters), 39 HHCs who only converted their TST (TST-only converters), and 24 HHCs who converted both tests (QFT/TST converters). Univariate analysis revealed that TST-only converters were older. Additionally, increased odds of TST-only conversion were associated with older age (p = 0.02) and crowdedness (p = 0.025). QFT/TST converters had higher QFT quantitative values at conversion than QFT-only converters and a bigger change in TST quantitative values at conversion than TST-only converters. Collectively, these data indicate that TST conversion alone likely overestimates Mtb infection. Its correlation to older age suggests an "environmental" boosting response due to prolonged exposure to environmental mycobacteria. This result also suggests that QFT/TST conversion may be associated with a more robust immune response, which should be considered when planning vaccine studies.
RESUMO
Mycobacterium tuberculosis (Mtb) exposure leads to a range of outcomes including clearance, latent TB infection (LTBI), and pulmonary tuberculosis (TB). Some heavily exposed individuals resist tuberculin skin test (TST) and interferon gamma release assay (IGRA) conversion (RSTR), which suggests that they employ IFNγ-independent mechanisms of Mtb control. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. Chromatin accessibility did not differ between uninfected RSTR and LTBI monocytes. In contrast, methylation significantly differed at 174 CpG sites and across 63 genomic regions. Consistent with previous transcriptional findings in this cohort, differential methylation was enriched in lipid and cholesterol associated pathways including in the genes APOC3, KCNQ1, and PLA2G3. In addition, methylation was enriched in Hippo signaling, which is associated with cholesterol homeostasis and includes CIT and SHANK2. Lipid export and Hippo signaling pathways were also associated with gene expression in response to Mtb in RSTR as well as IFN stimulation in monocyte-derived macrophages (MDMs) from an independent healthy donor cohort. Moreover, serum-derived HDL from RSTR had elevated ABCA1-mediated cholesterol efflux capacity (CEC) compared to LTBI. Our findings suggest that resistance to TST/IGRA conversion is linked to regulation of lipid accumulation in monocytes, which could facilitate early Mtb clearance among RSTR subjects through IFNγ-independent mechanisms.
RESUMO
Introduction: The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. Methods: We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. Results: cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in uninfected condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. Discussion: These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Monócitos/metabolismo , Locos de Características Quantitativas , Tuberculose/genética , Citocinas/metabolismoRESUMO
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of pediatric morbidity and mortality. Young children are at high risk of TB following Mtb exposure, and this vulnerability is secondary to insufficient host immunity during early life. Our primary objective was to compare CD4+ and CD8+ T-cell production of proinflammatory cytokines IFN-gamma, IL-2, and TNF-alpha in response to six mycobacterial antigens and superantigen staphylococcal enterotoxin B (SEB) between Ugandan adults with confirmed TB (n = 41) and young Ugandan children with confirmed (n = 12) and unconfirmed TB (n = 41), as well as non-TB lower respiratory tract infection (n = 39). Flow cytometry was utilized to identify and quantify CD4+ and CD8+ T-cell cytokine production in response to each mycobacterial antigen and SEB. We found that the frequency of CD4+ and CD8+ T-cell production of cytokines in response to SEB was reduced in all pediatric cohorts when compared to adults. However, T-cell responses to Mtb-specific antigens ESAT6 and CFP10 were equivalent between children and adults with confirmed TB. In contrast, cytokine production in response to ESAT6 and CFP10 was limited in children with unconfirmed TB and absent in children with non-TB lower respiratory tract infection. Of the five additional mycobacterial antigens tested, PE3 and PPE15 were broadly recognized regardless of TB disease classification and age. Children with confirmed TB exhibited robust proinflammatory CD4+ and CD8+ T-cell responses to Mtb-specific antigens prior to the initiation of TB treatment. Our findings suggest that adaptive proinflammatory immune responses to Mtb, characterized by T-cell production of IFN-gamma, IL-2, and TNF-alpha, are not impaired during early life.
RESUMO
OBJECTIVE: To determine whether Mycobacterium tuberculosis (Mtb)-induced monocyte transcriptional responses differ in people with HIV (PWH) who do (RSTR) or do not (LTBI) resist tuberculin skin test/interferon-γ (IFN-γ) release assay (TST/IGRA) conversion after exposure. DESIGN: We compared ex-vivo Mtb-induced monocyte transcriptional responses in a Ugandan tuberculosis (TB) household contact study of RSTR and LTBI individuals among PWH. METHODS: Monocytes were isolated from peripheral blood mononuclear cells from 19 household contacts of pulmonary TB patients, and their transcriptional profiles were measured with RNA-Seq after a 6âh infection with Mtb (H37Rv) or media. Differentially expressed genes (DEGs) were identified by a linear mixed effects model and pathways by gene set enrichment analysis that compared RSTR and LTBI phenotypes with and without Mtb stimulation. RESULTS: Among PWH, we identified 8341 DEGs that were dependent on Mtb stimulation [false discovery rate (FDR) <0.01]. Of these, 350 were not significant (FDR >0.2) in individuals without HIV. Additionally, we found 26 genes that were differentially expressed between RSTR and LTBI monocytes in PWH, including 20 which were Mtb-dependent (FDR <0.2). In unstimulated monocytes, several gene sets [TGF-ß signaling, TNF-α signaling via NF-κB, NOTCH signaling, coagulation, and epithelial mesenchymal transition (EMT)] were enriched in RSTR relative to LTBI monocytes (FDR <0.1). These patterns were not observed in individuals without HIV. CONCLUSION: RSTR monocytes in PWH show different gene expressions in response to Mtb infection when compared with those with LTBI and RSTR without HIV. These differential expression patterns are enriched in inflammatory pathways.
Assuntos
Infecções por HIV , Tuberculose Latente , Mycobacterium tuberculosis , Humanos , Testes de Liberação de Interferon-gama , Teste Tuberculínico , Monócitos , Tuberculose Latente/diagnóstico , Leucócitos Mononucleares , Infecções por HIV/complicaçõesRESUMO
The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in media condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
RESUMO
PURPOSE: Acute leukemias are associated with substantial morbidity and mortality, particularly in the adult population. Despite an increasing burden of acute leukemia in developing countries, there are limited data on clinical outcomes and prognostic factors in this setting. In this study, we aimed to describe the clinical characteristics, survival, and prognostic factors of adults with acute leukemia at the Uganda Cancer Institute (UCI). METHODS: A retrospective cohort study was conducted between January 2009 and December 2018, reviewing data of patients 18 years or older with a cytopathologic diagnosis of acute leukemia at UCI. Data were extracted on clinical and laboratory characteristics, response to treatment, and survival. Cox-proportional hazards regression and survival analysis were performed to determine survival rates and associated factors. P < .05 was considered statistically significant. RESULTS: In total, 233 participants were enrolled. Most (59.2%. n = 138) participants were male, with a median age of 32 years (IQR, 23-48 years), and 136 (58.4%) had AML. Overall, the 1-year survival was 16.5%, with a median survival time of 47 (IQR, 21-219) days. Predictors of mortality were being a female (adjusted hazard ratio [aHR], 2.8; 95% CI, 1.2 to 6.7; P = .022) and overweight (aHR, 4.2; 95% CI, 1.3 to 13.4; P = .015). Among the patients who had AML, the predictors were poor Eastern Cooperative Oncology Group (ECOG; aHR, 3.1; 95% CI, 1.6 to 6.2; P = .001) and HIV (aHR, 6.0; 95% CI, 1.7 to 20.5; P = .004). Among the patients who had ALL, the predictors were poor ECOG (aHR, 2.3; 95% CI, 1.3 to 4.1; P = .006). CONCLUSION: Patients with acute leukemia in Uganda have poor overall survival. Prospective studies are recommended to better understand causes of early mortality.
Assuntos
Leucemia Mieloide Aguda , Humanos , Adulto , Masculino , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Estudos Retrospectivos , Estudos Prospectivos , Uganda/epidemiologia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Modelos de Riscos ProporcionaisRESUMO
BACKGROUND: To improve tuberculosis (TB) diagnosis, the World Health Organisation (WHO) has called for a non-sputum based triage test to focus TB testing on people with a high likelihood of having active pulmonary tuberculosis (TB). Various host or pathogen biomarker-based testing devices are in design stage and require validity assessment. Host biomarkers have shown promise to accurately rule out active TB, but further research is required to determine generalisability. The TriageTB diagnostic test study aims to assess the accuracy of diagnostic test candidates, as well as field-test, finalise the design and biomarker signature, and validate a point-of-care multi-biomarker test (MBT). METHODS: This observational diagnostic study will evaluate sensitivity and specificity of biomarker-based diagnostic candidates including the MBT and Xpert® TB Fingerstick cartridge compared with a gold-standard composite TB outcome classification defined by symptoms, sputum GeneXpert® Ultra, smear and culture, radiological features, response to TB therapy and presence of an alternative diagnosis. The study will be conducted in research sites in South Africa, Uganda, The Gambia and Vietnam which all have high TB prevalence. The two-phase design allows for finalisation of the MBT in Phase 1 in which candidate host proteins will be evaluated on stored serum from Asia, South Africa and South America and on fingerstick blood from 50 newly recruited participants per site. The MBT test will then be locked down and validated in Phase 2 on 250 participants per site. DISCUSSION: By targeting confirmatory TB testing to those with a positive triage test, 75% of negative GXPU may be avoided, thereby reducing diagnostic costs and patient losses during the care cascade. This study builds on previous biomarker research and aims to identify a point-of-care test meeting or exceeding the minimum World Health Organisation target product profile of a 90% sensitivity and 70% specificity. Streamlining TB testing by identifying individuals with a high likelihood of TB should improve TB resources use and, in so doing, improve TB care. TRIAL REGISTRATION: NCT04232618 (clinicaltrials.gov) Date of registration: 16 January 2020.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Triagem , Tuberculose/diagnóstico , Testes Imediatos , Sensibilidade e Especificidade , BiomarcadoresRESUMO
MOTIVATION: The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Analysis), an open-source R package for flexible linear mixed effects modeling including covariates, weights, random effects, covariance matrices, and fit metrics. RESULTS: In simulated datasets, kimma detects DEGs with similar specificity, sensitivity, and computational time as limma unpaired and dream paired models. Unlike other software, kimma supports covariance matrices as well as fit metrics like Akaike information criterion (AIC). Utilizing genetic kinship covariance, kimma revealed that kinship impacts model fit and DEG detection in a related cohort. Thus, kimma equals or outcompetes current DEG pipelines in sensitivity, computational time, and model complexity. AVAILABILITY AND IMPLEMENTATION: Kimma is freely available on GitHub https://github.com/BIGslu/kimma with an instructional vignette at https://bigslu.github.io/kimma_vignette/kimma_vignette.html.
Assuntos
Perfilação da Expressão Gênica , Software , Humanos , RNA-Seq , Análise de Sequência de RNA , Modelos LinearesRESUMO
INTRODUCTION: The long duration of tuberculosis treatment, as well as the 2-year post-treatment follow-up period often required for predicting relapse, present a hindrance to drug development and treatment monitoring efforts. Therefore, there is need for treatment response biomarkers to inform treatment time shortening, clinical decision-making, and inform clinical trials. OBJECTIVES: To assess the abilities of serum host biomarkers to predict treatment response among active PTB patients. METHODS: Active pulmonary TB patients (n = 53) as confirmed by sputum MGIT culture were enrolled at a TB treatment centre in Kampala, Uganda. We evaluated concentrations of 27 serum host biomarkers at baseline, month 2, and month 6 following the initiation of anti-tuberculosis treatment using the luminex platform for their ability to predict sputum culture status at month-2 post treatment initiation. RESULTS: There were significant differences in concentrations of IL1ra, IL1ß, IL6, IP10, MCP-1, and IFNγ during treatment. A bio-signature comprising TTP, TNFα, PDGF-BB, IL9, and GCSF best predicted month 2 culture conversion with sensitivity and specificity of 82% (95% CI; 66 -92% and 57 -96% respectively). Slow anti-TB treatment responders had higher pro-inflammatory marker levels during treatment. The strongest correlation was observed between VEGF and IL12p70 (0.94), IL17A and basic FGF (0.92), basic FGF, and IL2 (0.88), and IL10 with IL17A (0.87). CONCLUSION: We identified host biomarkers that predicted early response to PTB treatment, which may be valuable in future clinical trials and treatment monitoring. Similarly, strong correlations between biomarkers provide options for biomarkers substitutions during the development of treatment response monitoring tools or point of care tests.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/uso terapêutico , Resultado do Tratamento , Uganda , BiomarcadoresRESUMO
BACKGROUND: A mechanistic understanding of uncommon immune outcomes such as resistance to infection has led to the development of novel therapies. Using gene level analytic methods, we previously found distinct monocyte transcriptional responses associated with resistance to Mycobacterium tuberculosis (Mtb) infection defined as persistently negative tuberculin skin test (TST) and interferon gamma release assay (IGRA) reactivity among highly exposed contacts (RSTR phenotype). OBJECTIVE: Using transcript isoform analyses, we aimed to identify novel RSTR-associated genes hypothesizing that previous gene-level differential expression analysis obscures isoform-specific differences that contribute to phenotype. MATERIALS AND METHODS: Monocytes from 49 RSTR versus 52 subjects with latent Mtb infection (LTBI) were infected with M. tuberculosis (H37Rv) or left unstimulated (media) prior to RNA isolation and sequencing. RSTR-associated gene expression was then identified using differential transcript isoform analysis. RESULTS: We identified 81 differentially expressed transcripts (DETs) in 70 genes (FDR <0.05) comparing RSTR and LTBI phenotypes with the majority (n = 79 DETs) identified under Mtb-stimulated conditions. Seventeen of these genes were previously identified with gene-level bulk RNAseq analyses including genes in the IFNγ response that had increased expression among LTBI subjects, findings consistent with a clinical phenotype based on IGRA reactivity. Among the subset of 23 genes with positive differential expression among Mtb-infected RSTR monocytes, 13 were not previously identified. These novel DET genes included PDE4A and ZEB2, which each had multiple DETs with higher expression among RSTR subjects, and ACSL4 and GAPDH that each had a single transcript isoform associated with RSTR. CONCLUSION AND LIMITATIONS: Transcript isoform-specific analyses identify transcriptional associations, such as those associated with resistance to TST/IGRA conversion, that are obscured when using gene-level approaches. These findings should be validated with additional RSTR cohorts and whether the newly identified candidate resistance genes directly influence the monocyte Mtb response requires functional study.