Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Opt ; 28(2): 026502, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36761255

RESUMO

Significance: Hyperspectral imaging (HSI) technologies offer great potential in fluorescence microscopy for multiplexed imaging, autofluorescence removal, and analysis of autofluorescent molecules. However, there are also associated trade-offs when implementing HSI in fluorescence microscopy systems, such as decreased acquisition speed, resolution, or field-of-view due to the need to acquire spectral information in addition to spatial information. The vast majority of HSI fluorescence microscopy systems provide spectral discrimination by filtering or dispersing the fluorescence emission, which may result in loss of emitted fluorescence signal due to optical filters, dispersive optics, or supporting optics, such as slits and collimators. Technologies that scan the fluorescence excitation spectrum may offer an approach to mitigate some of these trade-offs by decreasing the complexity of the emission light path. Aim: We describe the development of an optical technique for hyperspectral imaging fluorescence excitation-scanning (HIFEX) on a microscope system. Approach: The approach is based on the design of an array of wavelength-dependent light emitting diodes (LEDs) and a unique beam combining system that uses a multifurcated mirror. The system was modeled and optimized using optical ray trace simulations, and a prototype was built and coupled to an inverted microscope platform. The prototype system was calibrated, and initial feasibility testing was performed by imaging multilabel slide preparations. Results: We present results from optical ray trace simulations, prototyping, calibration, and feasibility testing of the system. Results indicate that the system can discriminate between at least six fluorescent labels and autofluorescence and that the approach can provide decreased wavelength switching times, in comparison with mechanically tuned filters. Conclusions: We anticipate that LED-based HIFEX microscopy may provide improved performance for time-dependent and photosensitive assays.


Assuntos
Carmustina , Óptica e Fotônica , Cintilografia , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos
2.
Biomed Opt Express ; 13(7): 3751-3772, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991911

RESUMO

Spectroscopic image data has provided molecular discrimination for numerous fields including: remote sensing, food safety and biomedical imaging. Despite the various technologies for acquiring spectral data, there remains a trade-off when acquiring data. Typically, spectral imaging either requires long acquisition times to collect an image stack with high spectral specificity or acquisition times are shortened at the expense of fewer spectral bands or reduced spatial sampling. Hence, new spectral imaging microscope platforms are needed to help mitigate these limitations. Fluorescence excitation-scanning spectral imaging is one such new technology, which allows more of the emitted signal to be detected than comparable emission-scanning spectral imaging systems. Here, we have developed a new optical geometry that provides spectral illumination for use in excitation-scanning spectral imaging microscope systems. This was accomplished using a wavelength-specific LED array to acquire spectral image data. Feasibility of the LED-based spectral illuminator was evaluated through simulation and benchtop testing and assessment of imaging performance when integrated with a widefield fluorescence microscope. Ray tracing simulations (TracePro) were used to determine optimal optical component selection and geometry. Spectral imaging feasibility was evaluated using a series of 6-label fluorescent slides. The LED-based system response was compared to a previously tested thin-film tunable filter (TFTF)-based system. Spectral unmixing successfully discriminated all fluorescent components in spectral image data acquired from both the LED and TFTF systems. Therefore, the LED-based spectral illuminator provided spectral image data sets with comparable information content so as to allow identification of each fluorescent component. These results provide proof-of-principle demonstration of the ability to combine output from many discrete wavelength LED sources using a double-mirror (Cassegrain style) optical configuration that can be further modified to allow for high speed, video-rate spectral image acquisition. Real-time spectral fluorescence microscopy would allow monitoring of rapid cell signaling processes (i.e., Ca2+ and other second messenger signaling) and has potential to be translated to clinical imaging platforms.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34045787

RESUMO

Fluorescence imaging microscopy has traditionally been used because of the high specificity that is achievable through fluorescence labeling techniques and optical filtering. When combined with spectral imaging technologies, fluorescence microscopy can allow for quantitative identification of multiple fluorescent labels. We are working to develop a new approach for spectral imaging that samples the fluorescence excitation spectrum and may provide increased signal strength. The enhanced signal strength may be used to provide increased spectral sensitivity and spectral, spatial, and temporal sampling capabilities. A proof of concept excitation scanning system has shown over 10-fold increase in signal to noise ratio compared to emission scanning hyperspectral imaging. Traditional hyperspectral imaging fluorescence microscopy methods often require minutes of acquisition time. We are developing a new configuration that utilizes solid state LEDs to combine multiple illumination wavelengths in a 2-mirror assembly to overcome the temporal limitations of traditional hyperspectral imaging. We have previously reported on the theoretical performance of some of the aspects of this system by using optical ray trace modeling. Here, we present results from prototyping and benchtop testing of the system, including assembly, optical characterization, and data collection. This work required the assembly and characterization of a novel excitation scanning hyperspectral microscopy system, containing 12 LEDs ranging from 365-425 nm, 12 lenses, a spherical mirror, and a flat mirror. This unique approach may reduce the long image acquisition times seen in traditional hyperspectral imaging while maintaining high specificity and sensitivity for multilabel identification and autofluorescence imaging in real time.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34045782

RESUMO

Many hardware approaches have been developed for implementing hyperspectral imaging on fluorescence microscope systems; each with tradeoffs in spectral sensitivity and spectral, spatial, and temporal sampling. For example, tunable filter-based systems typically have limited wavelength switching speeds and sensitivities that preclude high-speed spectral imaging. Here, we present a novel approach combining multiple illumination wavelengths using solid state LEDs in a 2-mirror configuration similar to a Cassegrain reflector assembly. This approach provides spectral discrimination by scanning a range of fluorescence excitation wavelengths, which we have previously shown can improve spectral image acquisition time compared to traditional fluorescence emission-scanning hyperspectral imaging. In this work, the geometry of the LED and other optical components was optimized. A model of the spectral illuminator was designed using TracePro ray tracing software (Lambda Research Corp.) that included an emitter, lens, Spherical mirror, flat mirror, and liquid light guide input. A parametric sensitivity study was performed to optimize the optical throughput varying the LED viewing angle, properties of the Spherical reflectors, the lens configuration, focal length, and position. The following factors significantly affected the optical throughput: LED viewing angle, lens position, and lens focal length. Several types of configurations were evaluated, and an optimized lens and LED position were determined. Initial optimization results indicate that a 10% optical transmission can be achieved for either a 16 or 32 wavelength system. Future work will include continuing to optimize the ray trace model, prototyping, and experimental testing of the optimized configuration.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34054188

RESUMO

Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions. Several lines of evidence suggest that the distribution of cAMP within cells is not uniform. However, to date, no studies have measured the kinetics of 3D cAMP distributions within cells. This is largely due to the low signal-to-noise ratio of FRET-based probes. We previously reported that hyperspectral imaging improves the signal-to-noise ratio of FRET measurements. Here we utilized hyperspectral imaging approaches to measure FRET signals in five dimensions (5D) - three spatial (x, y, z), wavelength (λ), and time (t) - allowing us to visualize cAMP gradients in pulmonary endothelial cells. cAMP levels were measured using a FRET-based sensor (H188) comprised of a cAMP binding domain sandwiched between FRET donor and acceptor - Turquoise and Venus fluorescent proteins. We observed cAMP gradients in response to 0.1 or 1 µM isoproterenol, 0.1 or 1 µM PGE1, or 50 µM forskolin. Forskolin- and isoproterenol-induced cAMP gradients formed from the apical (high cAMP) to basolateral (low cAMP) face of cells. In contrast, PGE1-induced cAMP gradients originated from both the basolateral and apical faces of cells. Data suggest that 2D (x,y) studies of cAMP compartmentalization may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D (x,y,z) studies are required to assess mechanisms of signaling specificity. Results demonstrate that 5D imaging technologies are powerful tools for measuring biochemical processes in discrete subcellular domains. This work was supported by NIH P01HL066299, R01HL058506, S10RR027535, AHA 16PRE27130004 and the Abraham Mitchell Cancer Research Fund.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA