Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Microbiol Spectr ; 9(2): e0067821, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34668733

RESUMO

Rhizosphere and root-associated bacteria are key components of crop production and sustainable agriculture. However, utilization of these beneficial bacteria is often limited by conventional culture techniques because a majority of soil microorganisms cannot be cultured using standard laboratory media. Therefore, the purpose of this study was to improve culturability and investigate the diversity of the bacterial communities from the wheat rhizosphere microbiome collected from three locations in Egypt with contrasting soil characteristics by using metagenomic analysis and improved culture-based methods. The improved strategies of the culture-dependent approach included replacing the agar in the medium with gellan gums and modifying its preparation by autoclaving the phosphate and gelling agents separately. Compared to the total operational taxonomic units (OTUs) observed from the metagenomic data sets derived from the three analyzed soils, 1.86 to 2.52% of the bacteria were recovered using the modified cultivation strategies, whereas less than 1% were obtained employing the standard cultivation protocols. Twenty-one percent of the cultivable isolates exhibited multiple plant growth-promoting (PGP) properties, including P solubilization activity and siderophore production. From the metagenomic analysis, the most abundant phyla were Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, and Firmicutes. Moreover, the relative abundance of the specific bacterial taxa was correlated with the soil characteristics, demonstrating the effect of the soil in modulating the plant rhizosphere microbiome. IMPORTANCE Bacteria colonizing the rhizosphere, a narrow zone of soil surrounding the root system, are known to have beneficial effects in improving the growth and stress tolerance of plants. However, most bacteria in natural environments, especially those in rhizosphere soils, are recalcitrant to cultivation using traditional techniques, and thus their roles in soil health and plant growth remain unexplored. Hence, investigating new culture media and culture conditions to bring "not-yet-cultured" species into cultivation and to identify new functions is still an important task for all microbiologists. To this end, we describe improved cultivation protocols that increase the number and diversity of cultured bacteria from the rhizosphere of wheat plants. Using such approaches will lead to new insights into culturing more beneficial bacteria that live in the plant rhizosphere, in so doing creating greater opportunities not only for field application but also for promoting sustainability.


Assuntos
Bactérias/classificação , Microbiota , Rizosfera , Microbiologia do Solo , Triticum/microbiologia , Agricultura , Bactérias/genética , Biodiversidade , Metagenoma , Metagenômica , Microbiota/genética , RNA Ribossômico 16S , Solo
2.
Front Microbiol ; 11: 1149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636811

RESUMO

Corn (Zea mays L.) is not only an important food source, but also has numerous uses, including for biofuels, fillers for cosmetics, glues, and so on. The amount of corn grown in the U.S. has significantly increased since the 1960's and with it, the demand for synthetic fertilizers and pesticides/fungicides to enhance its production. However, the downside of the continuous use of these products, especially N and P fertilizers, has been an increase in N2O emissions and other greenhouse gases into the atmosphere as well as run-off into waterways that fuel pollution and algal blooms. These approaches to agriculture, especially if exacerbated by climate change, will result in decreased soil health as well as human health. We searched for microbes from arid, native environments that are not being used for agriculture because we reasoned that indigenous microbes from such soils could promote plant growth and help restore degraded soils. Employing cultivation-dependent methods to isolate bacteria from the Negev Desert in Israel, we tested the effects of several microbial isolates on corn in both greenhouse and small field studies. One strain, Dietzia cinnamea 55, originally identified as Planomicrobium chinense, significantly enhanced corn growth over the uninoculated control in both greenhouse and outside garden experiments. We sequenced and analyzed the genome of this bacterial species to elucidate some of the mechanisms whereby D. cinnamea 55 promoted plant growth. In addition, to ensure the biosafety of this previously unknown plant growth promoting bacterial (PGPB) strain as a potential bioinoculant, we tested the survival and growth of Caenorhabditis elegans and Galleria mellonella (two animal virulence tests) as well as plants in response to D. cinnamea 55 inoculation. We also looked for genes for potential virulence determinants as well as for growth promotion.

3.
Curr Microbiol ; 76(5): 566-574, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30820638

RESUMO

Burkholderia cenocepacia TAtl-371 was isolated from the rhizosphere of a tomato plant growing in Atlatlahucan, Morelos, Mexico. This strain exhibited a broad antimicrobial spectrum against bacteria, yeast, and fungi. Here, we report and describe the improved, high-quality permanent draft genome of B. cenocepacia TAtl-371, which was sequenced using a combination of PacBio RS and PacBio RS II sequencing methods. The 7,496,106 bp genome of the TAtl-371 strain is arranged in three scaffolds, contains 6722 protein-coding genes, and 99 RNA only-encoding genes. Genome analysis revealed genes related to biosynthesis of antimicrobials such as non-ribosomal peptides, siderophores, chitinases, and bacteriocins. Moreover, analysis of bacterial growth on different carbon and nitrogen sources shows that the strain retains its antimicrobial ability.


Assuntos
Antibiose , Burkholderia cenocepacia/genética , Complexo Burkholderia cepacia , Carbono/metabolismo , Genoma Bacteriano , Nitrogênio/metabolismo , Bacteriocinas/genética , Burkholderia cenocepacia/isolamento & purificação , Quitinases/genética , Solanum lycopersicum/microbiologia , México , Rizosfera , Análise de Sequência de DNA , Sideróforos/genética , Microbiologia do Solo
4.
Can J Microbiol ; 65(2): 91-104, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30226998

RESUMO

The Green Revolution developed new crop varieties, which greatly improved food security worldwide. However, the growth of these plants relied heavily on chemical fertilizers and pesticides, which have led to an overuse of synthetic fertilizers, insecticides, and herbicides with serious environmental consequences and negative effects on human health. Environmentally friendly plant-growth-promoting methods to replace our current reliance on synthetic chemicals and to develop more sustainable agricultural practices to offset the damage caused by many agrochemicals are proposed herein. The increased use of bioinoculants, which consist of microorganisms that establish synergies with target crops and influence production and yield by enhancing plant growth, controlling disease, and providing critical mineral nutrients, is a potential solution. The microorganisms found in bioinoculants are often bacteria or fungi that reside within either external or internal plant microbiomes. However, before they can be used routinely in agriculture, these microbes must be confirmed as nonpathogenic strains that promote plant growth and survival. In this article, besides describing approaches for discovering plant-growth-promoting bacteria in various environments, including phytomicrobiomes and soils, we also discuss methods to evaluate their safety for the environment and for human health.


Assuntos
Bactérias , Produtos Agrícolas , Microbiota , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Microbiologia do Solo , Agricultura/métodos , Humanos
5.
Front Microbiol ; 9: 2363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333816

RESUMO

Fusarium is a complex genus of ascomycete fungi that consists of plant pathogens of agricultural relevance. Controlling Fusarium infection in crops that leads to substantial yield losses is challenging. These economic losses along with environmental and human health concerns over the usage of chemicals in attaining disease control are shifting focus toward the use of biocontrol agents for effective control of phytopathogenic Fusarium spp. In the present study, an analysis of the plant-growth promoting (PGP) and biocontrol attributes of four bacilli (Bacillus simplex 30N-5, B. simplex 11, B. simplex 237, and B. subtilis 30VD-1) has been conducted. The production of cellulase, xylanase, pectinase, and chitinase in functional assays was studied, followed by in silico gene analysis of the PGP-related and biocontrol-associated genes. Of all the bacilli included in this study, B. subtilis 30VD-1 (30VD-1) demonstrated the most effective antagonism against Fusarium spp. under in vitro conditions. Additionally, 100 µg/ml of the crude 1-butanol extract of 30VD-1's cell-free culture filtrate caused about 40% inhibition in radial growth of Fusarium spp. Pea seed bacterization with 30VD-1 led to considerable reduction in wilt severity in plants with about 35% increase in dry plant biomass over uninoculated plants growing in Fusarium-infested soil. Phase contrast microscopy demonstrated distortions and abnormal swellings in F. oxysporum hyphae on co-culturing with 30VD-1. The results suggest a multivariate mode of antagonism of 30VD-1 against phytopathogenic Fusarium spp., by producing chitinase, volatiles, and other antifungal molecules, the characterization of which is underway.

6.
Stand Genomic Sci ; 12: 80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255574

RESUMO

10.1601/nm.26956 caballeronis is a plant-associated bacterium. Strain TNe-841T was isolated from the rhizosphere of tomato (Solanum lycopersicum L. var. lycopersicum) growing in Nepantla Mexico State. Initially this bacterium was found to effectively nodulate Phaseolus vulgaris L. However, from an analysis of the genome of strain TNe-841T and from repeat inoculation experiments, we found that this strain did not nodulate bean and also lacked nodulation genes, suggesting that the genes were lost. The genome consists of 7,115,141 bp with a G + C content of 67.01%. The sequence includes 6251 protein-coding genes and 87 RNA genes.

7.
Microorganisms ; 5(4)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165349

RESUMO

Despite efforts to control toxigenic Fusarium species, wilt and head-blight infections are destructive and economically damaging diseases that have global effects. The utilization of biological control agents in disease management programs has provided an effective, safe, and sustainable means to control Fusarium-induced plant diseases. Among the most widely used microbes for biocontrol agents are members of the genus Bacillus. These species influence plant and fungal pathogen interactions by a number of mechanisms such as competing for essential nutrients, antagonizing pathogens by producing fungitoxic metabolites, or inducing systemic resistance in plants. The multivariate interactions among plant-biocontrol agent-pathogen are the subject of this study, in which we survey the advances made regarding the research on the Bacillus-Fusarium interaction and focus on the principles and mechanisms of action among plant-growth promoting Bacillus species. In particular, we highlight their use in limiting and controlling Fusarium spread and infestations of economically important crops. This knowledge will be useful to define strategies for exploiting this group of beneficial bacteria for use as inoculants by themselves or in combination with other microbes for enhanced crop protection.

8.
Plant Signal Behav ; 12(1): e1268313, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27935414

RESUMO

Earlier, we reported that root nodulation was inhibited by blue light irradiation of Lotus japonicus. Because some legumes do not establish nodules exclusively on underground roots, we investigated whether nodule formation in Sesbania rostrata, which forms both root and "stem" nodules following inoculation with Azorhizobium caulinodans, is inhibited by blue light as are L. japonicus nodules. We found that neither S. rostrata nodulation nor nitrogen fixation was inhibited by blue light exposure. Moreover, although A. caulinodans proliferation was not affected by blue light irradiation, bacterial survival was decreased. Therefore, blue light appears to impose different responses depending on the legume-rhizobial symbiosis.


Assuntos
Azorhizobium caulinodans/fisiologia , Luz , Nodulação/efeitos da radiação , Sesbania/microbiologia , Sesbania/efeitos da radiação
9.
Mol Plant Microbe Interact ; 29(10): 786-796, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27611874

RESUMO

In many legumes, roots that are exposed to light do not form nodules. Here, we report that blue light inhibits nodulation in Lotus japonicus roots inoculated with Mesorhizobium loti. Using RNA interference, we suppressed the expression of the phototropin and cryptochrome genes in L. japonicus hairy roots. Under blue light, plants transformed with an empty vector did not develop nodules, whereas plants exhibiting suppressed expression of cry1 and cry2 genes formed nodules. We also measured rhizobial growth to investigate whether the inhibition of nodulation could be caused by a reduced population of rhizobia in response to light. Although red light had no effect on rhizobial growth, blue light had a strong inhibitory effect. Rhizobial growth under blue light was partially restored in signature-tagged mutagenesis (STM) strains in which LOV-HK/PAS- and photolyase-related genes were disrupted. Moreover, when Ljcry1A and Ljcry2B-silenced plants were inoculated with the STM strains, nodulation was additively increased. Our data show that blue light receptors in both the host plant and the symbiont have a profound effect on nodule development. The exact mechanism by which these photomorphogenetic responses function in the symbiosis needs further study, but they are clearly involved in optimizing legume nodulation.


Assuntos
Lotus/efeitos da radiação , Mesorhizobium/efeitos da radiação , Nodulação/efeitos da radiação , Simbiose/efeitos da radiação , Criptocromos/genética , Luz , Lotus/genética , Lotus/microbiologia , Lotus/fisiologia , Mesorhizobium/fisiologia , Mutagênese , Fototropinas/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Interferência de RNA
10.
Front Plant Sci ; 6: 784, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442090

RESUMO

In previous work, we showed that coinoculating Rhizobium leguminosarum bv. viciae 128C53 and Bacillus simplex 30N-5 onto Pisum sativum L. roots resulted in better nodulation and increased plant growth. We now expand this research to include another alpha-rhizobial species as well as a beta-rhizobium, Burkholderia tuberum STM678. We first determined whether the rhizobia were compatible with B. simplex 30N-5 by cross-streaking experiments, and then Medicago truncatula and Melilotus alba were coinoculated with B. simplex 30N-5 and Sinorhizobium (Ensifer) meliloti to determine the effects on plant growth. Similarly, B. simplex 30N-5 and Bu. tuberum STM678 were coinoculated onto Macroptilium atropurpureum. The exact mechanisms whereby coinoculation results in increased plant growth are incompletely understood, but the synthesis of phytohormones and siderophores, the improved solubilization of inorganic nutrients, and the production of antimicrobial compounds are likely possibilities. Because B. simplex 30N-5 is not widely recognized as a Plant Growth Promoting Bacterial (PGPB) species, after sequencing its genome, we searched for genes proposed to promote plant growth, and then compared these sequences with those from several well studied PGPB species. In addition to genes involved in phytohormone synthesis, we detected genes important for the production of volatiles, polyamines, and antimicrobial peptides as well as genes for such plant growth-promoting traits as phosphate solubilization and siderophore production. Experimental evidence is presented to show that some of these traits, such as polyamine synthesis, are functional in B. simplex 30N-5, whereas others, e.g., auxin production, are not.

11.
Am J Bot ; 100(9): 1713-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23975635

RESUMO

PREMISE OF THE STUDY: Plant roots comprise more than 50% of the plant's biomass. Part of that biomass includes the root microbiome, the assemblage of bacteria and fungi living in the 1-3 mm region adjacent to the external surface of the root, the rhizosphere. We hypothesized that the microorganisms living in the rhizosphere and in bulk soils of the harsh environment of the Negev Desert of Israel had potential for use as plant-growth-promoting bacteria (PGPB) to improve plant productivity in nutrient-poor, arid soils that are likely to become more common as the climate changes. • METHODS: We used cultivation-dependent methods including trap experiments with legumes to find nitrogen-fixing rhizobia, specialized culture media to determine iron chelation via siderophores and phosphate-solubilizing and cellulase activities; cultivation-independent methods, namely 16S rDNA cloning and sequencing; and also community-level physiological profiling to discover soil microbes associated with the Negev desert perennials Zygophyllum dumosum and Atriplex halimus during the years 2009-2010. • KEY RESULTS: We identified a number of PGPB, both epiphytes and endophytes, which fix nitrogen, chelate iron, solubilize phosphate, and secrete cellulase, as well as many other bacteria and some fungi, thereby providing a profile of the microbiomes that support the growth of two desert perennials. • CONCLUSION: We generated a snapshot of the microbial communities in the Negev Desert, giving us an insight in its natural state. This desert, like many arid environments, is vulnerable to exploitation for other purposes, including solar energy production and dry land farming.


Assuntos
Atriplex/microbiologia , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Raízes de Plantas/microbiologia , Microbiologia do Solo , Zygophyllum/microbiologia , Agricultura , Bactérias/classificação , Biodiversidade , Biomassa , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Clima Desértico , Ecossistema , Fungos/classificação , Israel , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Simbiose
12.
Plant Cell ; 21(1): 118-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19141709

RESUMO

Arabidopsis thaliana cryptochrome 2 (CRY2) mediates photoperiodic promotion of floral initiation and blue light inhibition of hypocotyl elongation. It has been hypothesized that photoexcitation derepresses CRY2 by disengaging its C-terminal domain from the N-terminal PHR domain. To test this hypothesis, we analyzed activities of CRY2 fused to green fluorescent protein (GFP) at either the N terminus (GFP-CRY2) or the C terminus (CRY2-GFP). While GFP-CRY2 exerts light-dependent biochemical and physiological activities similar to those of the endogenous CRY2, CRY2-GFP showed constitutive biochemical and physiological activities. CRY2-GFP is constitutively phosphorylated, it promotes deetiolation in both dark and light, and it activates floral initiation in both long-day and short-day photoperiods. These results are consistent with the hypothesis that photoexcited CRY2 disengages its C-terminal domain from the PHR domain to become active. Surprisingly, we found that CRY2-GFP, but not GFP-CRY2, formed distinct nuclear bodies in response to blue light. Compared with GFP-CRY2 or the endogenous CRY2, CRY2-GFP degradation was significantly retarded in response to blue light, suggesting that the nuclear bodies may result from accumulation of photoexcited CRY2-GFP waiting to be degraded. Consistent with this interpretation, we showed that both GFP-CRY2 and endogenous CRY2 formed nuclear bodies in the presence of the 26S-proteasome inhibitors that block blue light-dependent CRY2 degradation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavoproteínas/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , Luz , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efeitos da radiação , Criptocromos , Flavoproteínas/genética , Flavoproteínas/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/efeitos da radiação , Modelos Moleculares , Fosforilação , Fotorreceptores de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/efeitos da radiação
13.
Plant Cell ; 19(10): 3146-56, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17965271

RESUMO

CRY2 is a blue light receptor regulating light inhibition of hypocotyl elongation and photoperiodic flowering in Arabidopsis thaliana. The CRY2 protein is found primarily in the nucleus, and it is known to undergo blue light-dependent phosphorylation and degradation. However, the subcellular location where CRY2 exerts its function or undergoes blue light-dependent phosphorylation and degradation remains unclear. In this study, we analyzed the function and regulation of conditionally nuclear-localized CRY2. Our results show that CRY2 mediates blue light inhibition of hypocotyl elongation and photoperiodic promotion of floral initiation in the nucleus. Consistent with this result and a hypothesis that blue light-dependent phosphorylation is associated with CRY2 function, we demonstrate that CRY2 undergoes blue light-dependent phosphorylation in the nucleus. CRY2 phosphorylation is required for blue light-dependent CRY2 degradation, but only a limited quantity of CRY2 is phosphorylated at any given moment in seedlings exposed to blue light, which explains why continuous blue light illumination is required for CRY2 degradation. Finally, we showed that CRY2 is ubiquitinated in response to blue light and that ubiquitinated CRY2 is degraded by the 26S proteasome in the nucleus. These findings demonstrate that a photoreceptor can complete its posttranslational life cycle (from protein modification, to function, to degradation) inside the nucleus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Criptocromos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hipocótilo/genética , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Immunoblotting , Luz , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitinação/efeitos da radiação
14.
Proc Natl Acad Sci U S A ; 104(17): 7289-94, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17438275

RESUMO

Cryptochromes are blue light receptors that regulate photomorphogenesis in plants and the circadian clock in animals and plants. Arabidopsis cryptochrome 2 (CRY2) mediates blue light inhibition of hypocotyl elongation and photoperiodic control of floral initiation. CRY2 undergoes blue light-induced phosphorylation, which was hypothesized to be associated with CRY2 photoactivation. To further investigate how light activates CRY2, we analyzed the physiological activities and phosphorylation of various CRY2 fusion proteins in transgenic plants. Our results showed that an 80-residue motif, referred to as NC80, was sufficient to confer the physiological function of CRY2. The GUS-NC80 fusion protein expressed in transgenic plants is constitutively active but unphosphorylated, suggesting that the blue light-induced CRY2 phosphorylation causes a conformational change to derepress the NC80 motif. Consistent with this hypothesis, the CRY2 C-terminal tail was found to be required for the blue light-induced CRY2 phosphorylation but not for the CRY2 activity. We propose that the PHR domain and the C-terminal tail of the unphosphorylated CRY2 form a "closed" conformation to suppress the NC80 motif in the absence of light. In response to blue light, the C-terminal tail of CRY2 is phosphorylated and electrostatically repelled from the surface of the PHR domain to form an "open" conformation, resulting in derepression of the NC80 motif and signal transduction to trigger photomorphogenic responses.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Motivos de Aminoácidos , Arabidopsis/genética , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Criptocromos , Dimerização , Fenótipo , Fosforilação/efeitos da radiação , Plantas Geneticamente Modificadas , Conformação Proteica/efeitos da radiação , Transporte Proteico/efeitos da radiação , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
15.
Plant Cell ; 15(10): 2421-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14523249

RESUMO

Cryptochromes are photolyase-like blue/UV-A light receptors that regulate various light responses in animals and plants. Arabidopsis cryptochrome 1 (cry1) is the major photoreceptor mediating blue light inhibition of hypocotyl elongation. The initial photochemistry underlying cryptochrome function and regulation remain poorly understood. We report here a study of the blue light-dependent phosphorylation of Arabidopsis cry1. Cry1 is detected primarily as unphosphorylated protein in etiolated seedlings, but it is phosphorylated in plants exposed to blue light. Cry1 phosphorylation increases in response to increased fluence of blue light, whereas the phosphorylated cry1 disappears rapidly when plants are transferred from light to dark. Light-dependent cry1 phosphorylation appears specific to blue light, because little cry1 phosphorylation is detected in seedlings treated with red light or far-red light, and it is largely independent from phytochrome actions, because no phytochrome mutants tested significantly affect cry1 phosphorylation. The Arabidopsis cry1 protein expressed and purified from insect cells is phosphorylated in vitro in a blue light-dependent manner, consistent with cry1 undergoing autophosphorylation. To determine whether cry1 phosphorylation is associated with its function or regulation, we isolated and characterized missense cry1 mutants that express full-length CRY1 apoprotein. Mutant residues are found throughout the CRY1 coding sequence, but none of these inactive cry1 mutant proteins shows blue light-induced phosphorylation. These results demonstrate that blue light-dependent cry1 phosphorylation is closely associated with the function or regulation of the photoreceptor and that the overall structure of cry1 is critical to its phosphorylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Drosophila , Proteínas do Olho , Flavoproteínas/metabolismo , Luz , Células Fotorreceptoras de Invertebrados , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efeitos da radiação , Criptocromos , Flavoproteínas/genética , Flavoproteínas/efeitos da radiação , Cinética , Dados de Sequência Molecular , Fosforilação/efeitos da radiação , Receptores Acoplados a Proteínas G , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
Nature ; 417(6890): 763-7, 2002 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12066190

RESUMO

Cryptochromes are blue/ultraviolet-A light receptors that mediate various light responses in plants and animals. But the initial photochemical reaction of cryptochrome is still unclear. For example, although most photoreceptors are known to undergo light-dependent protein modification such as phosphorylation, no blue-light dependent phosphorylation has been reported for a cryptochrome. Arabidopsis cryptochrome 2 (cry2) mediates light regulation of seedling development and photoperiodic flowering. The physiological activity and cellular level of cry2 protein are light-dependent, and protein protein interactions are important for cry2 function. Here we report that cry2 undergoes a blue-light-dependent phosphorylation, and that cry2 phosphorylation is associated with its function and regulation. Our results suggest that, in the absence of light, cry2 remains unphosphorylated, inactive and stable; absorption of blue light induces the phosphorylation of cry2, triggering photomorphogenic responses and eventually degradation of the photoreceptor.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Drosophila , Proteínas do Olho , Flavoproteínas/metabolismo , Luz , Células Fotorreceptoras de Invertebrados , Ubiquitina-Proteína Ligases , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Western Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cor , Criptocromos , Escuridão , Flavoproteínas/química , Flavoproteínas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Cinética , Mutação , Fosforilação/efeitos da radiação , Fotoperíodo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA