RESUMO
Approximately 50% of patients with surgically resected early-stage lung cancer develop distant metastasis. At present, there is no in vivo metastasis model to investigate the biology of human lung cancer metastases. Using well-characterized lung adenocarcinoma (LUAD) patient-derived organoids (PDOs), we establish an in vivo metastasis model that preserves the biologic features of human metastases. Results of whole-genome and RNA sequencing establish that our in vivo PDO metastasis model can be used to study clonality and tumor evolution and to identify biomarkers related to organotropism. Investigation of the response of KRASG12C PDOs to sotorasib demonstrates that the model can examine the efficacy of treatments to suppress metastasis and identify mechanisms of drug resistance. Finally, our PDO model cocultured with autologous peripheral blood mononuclear cells can potentially be used to determine the optimal immune-priming strategy for individual patients with LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Organoides , Humanos , Organoides/patologia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Animais , Camundongos , Metástase Neoplásica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Modelos Biológicos , Leucócitos Mononucleares/metabolismoRESUMO
We analyzed 2,532 lung adenocarcinomas (LUAD) to identify the clinicopathological and genomic features associated with metastasis, metastatic burden, organotropism, and metastasis-free survival. Patients who develop metastasis are younger and male, with primary tumors enriched in micropapillary or solid histological subtypes and with a higher mutational burden, chromosomal instability, and fraction of genome doublings. Inactivation of TP53, SMARCA4, and CDKN2A are correlated with a site-specific shorter time to metastasis. The APOBEC mutational signature is more prevalent among metastases, particularly liver lesions. Analyses of matched specimens show that oncogenic and actionable alterations are frequently shared between primary tumors and metastases, whereas copy number alterations of unknown significance are more often private to metastases. Only 4% of metastases harbor therapeutically actionable alterations undetected in their matched primaries. Key clinicopathological and genomic alterations in our cohort were externally validated. In summary, our analysis highlights the complexity of clinicopathological features and tumor genomics in LUAD organotropism.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Masculino , Adenocarcinoma de Pulmão/genética , Mutação , Variações do Número de Cópias de DNA , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Genômica , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genéticaRESUMO
Oncogenic KRas activates mitochondrial fission through Erk-mediated phosphorylation of the mitochondrial fission GTPase Drp1. Drp1 deletion inhibits tumorigenesis of KRas-driven pancreatic cancer, but the role of mitochondrial dynamics in other Ras-driven malignancies is poorly defined. Here we show that in vitro and in vivo growth of KRas-driven lung adenocarcinoma is unaffected by deletion of Drp1 but is inhibited by deletion of Opa1, the GTPase that regulates inner membrane fusion and proper cristae morphology. Mechanistically, Opa1 knockout disrupts cristae morphology and inhibits electron transport chain (ETC) assembly and activity, which inhibits tumor cell proliferation through loss of NAD+ regeneration. Simultaneous inactivation of Drp1 and Opa1 restores cristae morphology, ETC activity, and cell proliferation indicating that mitochondrial fission activity drives ETC dysfunction induced by Opa1 knockout. Our results support a model in which mitochondrial fission events disrupt cristae structure, and tumor cells with hyperactive fission activity require Opa1 activity to maintain ETC function.
Assuntos
Adenocarcinoma de Pulmão , NAD , Humanos , NAD/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Membranas Mitocondriais/metabolismo , Dinâmica Mitocondrial , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dinaminas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismoRESUMO
In the past decade, defective DNA repair has been increasingly linked with cancer progression. Human tumors with markers of defective DNA repair and increased replication stress exhibit genomic instability and poor survival rates across tumor types. Seminal studies have demonstrated that genomic instability develops following inactivation of BRCA1, BRCA2, or BRCA-related genes. However, it is recognized that many tumors exhibit genomic instability but lack BRCA inactivation. We sought to identify a pan-cancer mechanism that underpins genomic instability and cancer progression in BRCA-wildtype tumors. Methods: Using multi-omics data from two independent consortia, we analyzed data from dozens of tumor types to identify patient cohorts characterized by poor outcomes, genomic instability, and wildtype BRCA genes. We developed several novel metrics to identify the genetic underpinnings of genomic instability in tumors with wildtype BRCA. Associated clinical data was mined to analyze patient responses to standard of care therapies and potential differences in metastatic dissemination. Results: Systematic analysis of the DNA repair landscape revealed that defective single-strand break repair, translesion synthesis, and non-homologous end-joining effectors drive genomic instability in tumors with wildtype BRCA and BRCA-related genes. Importantly, we find that loss of these effectors promotes replication stress, therapy resistance, and increased primary carcinoma to brain metastasis. Conclusions: Our results have defined a new pan-cancer class of tumors characterized by replicative instability (RIN). RIN is defined by the accumulation of intra-chromosomal, gene-level gain and loss events at replication stress sensitive (RSS) genome sites. We find that RIN accelerates cancer progression by driving copy number alterations and transcriptional program rewiring that promote tumor evolution. Clinically, we find that RIN drives therapy resistance and distant metastases across multiple tumor types.
Assuntos
Instabilidade Genômica , Neoplasias , Humanos , Reparo do DNA/genética , Reparo do DNA por Junção de Extremidades , Neoplasias/genética , Replicação do DNA , Aberrações CromossômicasRESUMO
About 50% of patients with early-stage, surgically resected lung cancer will develop distant metastasis. There remains an unmet need to identify patients likely to develop recurrence and to design innovative therapies to decrease this risk. Two primary isoforms of BRMS1, v1 and v2, are present in humans. Using next-generation sequencing of BRMS1 on matched human noncancerous lung tissue and non-small cell lung cancer (NSCLC) specimens, we identified single-nucleotide polymorphism (SNP) rs1052566 that results in an A273V mutation of BRMS1v2. This SNP is homozygous (BRMS1v2A273V/A273V) in 8% of the population and correlates with aggressive biology in lung adenocarcinoma (LUAD). Mechanistically, we show that BRMS1v2 A273V abolishes the metastasis suppressor function of BRMS1v2 and promotes robust cell invasion and metastases by activation of c-fos-mediated gene-specific transcriptional regulation. BRMS1v2 A273V increases cell invasion in vitro and increases metastases in both tail-vein injection xenografts and LUAD patient-derived organoid (PDO) intracardiac injection metastasis in vivo models. Moreover, we show that BRMS1v2 A273V fails to interact with nuclear Src, thereby activating intratumoral c-fos in vitro. Higher c-fos results in up-regulation of CEACAM6, which drives metastases in vitro and in vivo. Using both xenograft and PDO metastasis models, we repurposed T5224 for treatment, a c-fos pharmacologic inhibitor investigated in clinical trials for arthritis, and observed suppression of metastases in BRMS1v2A273V/A273V LUAD in mice. Collectively, we elucidate the mechanism of BRMS1v2A273V/A273V-induced metastases and offer a putative therapeutic strategy for patients with LUAD who have this germline alteration.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Germinativas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Repressoras/metabolismo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Importance: Recommendations for adjuvant therapy after surgical resection of lung adenocarcinoma (LUAD) are based solely on TNM classification but are agnostic to genomic and high-risk clinicopathologic factors. Creation of a prediction model that integrates tumor genomic and clinicopathologic factors may better identify patients at risk for recurrence. Objective: To identify tumor genomic factors independently associated with recurrence, even in the presence of aggressive, high-risk clinicopathologic variables, in patients with completely resected stages I to III LUAD, and to develop a computational machine-learning prediction model (PRecur) to determine whether the integration of genomic and clinicopathologic features could better predict risk of recurrence, compared with the TNM system. Design, Setting, and Participants: This prospective cohort study included 426 patients treated from January 1, 2008, to December 31, 2017, at a single large cancer center and selected in consecutive samples. Eligibility criteria included complete surgical resection of stages I to III LUAD, broad-panel next-generation sequencing data with matched clinicopathologic data, and no neoadjuvant therapy. External validation of the PRecur prediction model was performed using The Cancer Genome Atlas (TCGA). Data were analyzed from 2014 to 2018. Main Outcomes and Measures: The study end point consisted of relapse-free survival (RFS), estimated using the Kaplan-Meier approach. Associations among clinicopathologic factors, genomic alterations, and RFS were established using Cox proportional hazards regression. The PRecur prediction model integrated genomic and clinicopathologic factors using gradient-boosting survival regression for risk group generation and prediction of RFS. A concordance probability estimate (CPE) was used to assess the predictive ability of the PRecur model. Results: Of the 426 patients included in the analysis (286 women [67%]; median age at surgery, 69 [interquartile range, 62-75] years), 318 (75%) had stage I cancer. Association analysis showed that alterations in SMARCA4 (clinicopathologic-adjusted hazard ratio [HR], 2.44; 95% CI, 1.03-5.77; P = .042) and TP53 (clinicopathologic-adjusted HR, 1.73; 95% CI, 1.09-2.73; P = .02) and the fraction of genome altered (clinicopathologic-adjusted HR, 1.03; 95% CI, 1.10-1.04; P = .005) were independently associated with RFS. The PRecur prediction model outperformed the TNM-based model (CPE, 0.73 vs 0.61; difference, 0.12 [95% CI, 0.05-0.19]; P < .001) for prediction of RFS. To validate the prediction model, PRecur was applied to the TCGA LUAD data set (n = 360), and a clear separation of risk groups was noted (log-rank statistic, 7.5; P = .02), confirming external validation. Conclusions and Relevance: The findings suggest that integration of tumor genomics and clinicopathologic features improves risk stratification and prediction of recurrence after surgical resection of early-stage LUAD. Improved identification of patients at risk for recurrence could enrich and enhance accrual to adjuvant therapy clinical trials.
Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Adenocarcinoma/cirurgia , Idoso , Feminino , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/cirurgia , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Estudos Prospectivos , Medição de RiscoRESUMO
INTRODUCTION: The purpose of the study is to genomically characterize the biology and related therapeutic opportunities of prognostically important predominant histologic subtypes in lung adenocarcinoma (LUAD). METHODS: We identified 604 patients with stage I to III LUAD who underwent complete resection and targeted next-generation sequencing using the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets platform. Tumors were classified according to predominant histologic subtype and grouped by architectural grade (lepidic [LEP], acinar or papillary [ACI/PAP], and micropapillary or solid [MIP/SOL]). Associations among clinicopathologic factors, genomic features, mutational signatures, and recurrence were evaluated within subtypes and, when appropriate, quantified using competing-risks regression, with adjustment for pathologic stage and extent of resection. RESULTS: MIP/SOL tumors had higher tumor mutational burden (p < 0.001), fraction of genome altered (p = 0.001), copy number amplifications (p = 0.021), rate of whole-genome doubling (p = 0.008), and number of oncogenic pathways altered ( p < 0.001) as compared with LEP and ACI/PAP tumors. Across all tumors, mutational signatures attributed to APOBEC activity were associated with the highest risk of postresection recurrence: SBS2 (p = 0.021) and SBS13 (p = 0.005). Three oncogenic pathways (p53, Wnt, Myc) were altered with statistical significance in MIP/SOL tumors. Compared with LEP and ACI/PAP tumors, MIP/SOL tumors had a higher frequency of targetable BRAF-V600E mutations (p = 0.046). Among ACI/PAP tumors, alterations in the cell cycle (p < 0.001) and PI3K (p = 0.002) pathways were associated with recurrence; among MIP/SOL tumors, only PI3K alterations were associated with recurrence (p = 0.049). CONCLUSIONS: These results provide the first in-depth assessment of tumor genomic profiling of predominant LUAD histologic subtypes, their associations with recurrence, and their correlation with targetable driver alterations in patients with surgically resected LUAD.
Assuntos
Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Idoso , Feminino , Genômica , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/genética , PrognósticoRESUMO
The majority of clinical deaths in patients with triple-negative breast cancer (TNBC) are due to chemoresistance and aggressive metastases, with high prevalence in younger women of African ethnicity. Although tumorigenic drivers are numerous and varied, the drivers of metastatic transition remain largely unknown. Here, we uncovered a molecular dependence of TNBC tumors on the TRIM37 network, which enables tumor cells to resist chemotherapeutic as well as metastatic stress. TRIM37-directed histone H2A monoubiquitination enforces changes in DNA repair that rendered TP53-mutant TNBC cells resistant to chemotherapy. Chemotherapeutic drugs triggered a positive feedback loop via ATM/E2F1/STAT signaling, amplifying the TRIM37 network in chemoresistant cancer cells. High expression of TRIM37 induced transcriptomic changes characteristic of a metastatic phenotype, and inhibition of TRIM37 substantially reduced the in vivo propensity of TNBC cells. Selective delivery of TRIM37-specific antisense oligonucleotides using antifolate receptor 1-conjugated nanoparticles in combination with chemotherapy suppressed lung metastasis in spontaneous metastatic murine models. Collectively, these findings establish TRIM37 as a clinically relevant target with opportunities for therapeutic intervention. SIGNIFICANCE: TRIM37 drives aggressive TNBC biology by promoting resistance to chemotherapy and inducing a prometastatic transcriptional program; inhibition of TRIM37 increases chemotherapy efficacy and reduces metastasis risk in patients with TNBC.
Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas com Motivo Tripartido/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
DRAIC is a 1.7 kb spliced long noncoding RNA downregulated in castration-resistant advanced prostate cancer. Decreased DRAIC expression predicts poor patient outcome in prostate and seven other cancers, while increased DRAIC represses growth of xenografted tumors. Here, we show that cancers with decreased DRAIC expression have increased NF-κB target gene expression. DRAIC downregulation increased cell invasion and soft agar colony formation; this was dependent on NF-κB activation. DRAIC interacted with subunits of the IκB kinase (IKK) complex to inhibit their interaction with each other, the phosphorylation of IκBα, and the activation of NF-κB. These functions of DRAIC mapped to the same fragment containing bases 701-905. Thus, DRAIC lncRNA inhibits prostate cancer progression through suppression of NF-κB activation by interfering with IKK activity. SIGNIFICANCE: A cytoplasmic tumor-suppressive lncRNA interacts with and inhibits a major kinase that activates an oncogenic transcription factor in prostate cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/5/950/F1.large.jpg.
Assuntos
Regulação Neoplásica da Expressão Gênica , Quinase I-kappa B/genética , NF-kappa B/metabolismo , Neoplasias da Próstata/genética , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Masculino , Camundongos , Fosforilação/genética , Próstata/patologia , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
It has long been recognized that defects in cell cycle checkpoint and DNA repair pathways give rise to genomic instability, tumor heterogeneity, and metastasis. Despite this knowledge, the transcription factor-mediated gene expression programs that enable survival and proliferation in the face of enormous replication stress and DNA damage have remained elusive. Using robust omics data from two independent studies, we provide evidence that a large cohort of lung adenocarcinomas exhibit significant genome instability and overexpress the DNA damage responsive transcription factor MYB proto-oncogene like 2 (MYBL2). Across two studies, elevated MYBL2 expression was a robust marker of poor overall survival and disease-free survival outcomes, regardless of disease stage. Clinically, elevated MYBL2 expression identified patients with aggressive early onset disease, increased lymph node involvement, and increased incidence of distant metastases. Analysis of genomic sequencing data demonstrated that MYBL2 High lung adenocarcinomas had elevated somatic mutation burden, widespread chromosomal alterations, and alterations in single-strand DNA break repair pathways. In this study, we provide evidence that impaired single-strand break repair, combined with a loss of cell cycle regulators TP53 and RB1, give rise to MYBL2-mediated transcriptional programs. Omics data supports a model wherein tumors with significant genomic instability upregulate MYBL2 to drive genes that control replication stress responses, promote error-prone DNA repair, and antagonize faithful homologous recombination repair. Our study supports the use of checkpoint kinase 1 (CHK1) pharmacological inhibitors, in targeted MYBL2 High patient cohorts, as a future therapy to improve lung adenocarcinoma patient outcomes.
RESUMO
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) results in changes that promote de-differentiation, migration, and invasion in non-small cell lung cancer (NSCLC). While it is recognized that EMT promotes altered energy utilization, identification of metabolic pathways that link EMT with cancer progression is needed. Work presented here indicates that mesenchymal NSCLC upregulates glutamine-fructose-6-phosphate transaminase 2 (GFPT2). GFPT2 is the rate-limiting enzyme in the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the obligate activator of O-linked N-acetylglucosamine transferase (OGT). METHODS: Analysis of our transcriptomic data indicates that GFPT2 is one of the most significantly upregulated metabolic genes in mesenchymal NSCLC. Ectopic GFPT2 expression, as well as gene silencing strategies were used to determine the importance of this metabolic enzyme in regulating EMT-driven processes of cell motility and invasion. RESULTS: Our work demonstrates that GFPT2 is transcriptionally upregulated by NF-κB and repressed by the NAD+-dependent deacetylase SIRT6. Depletion of GFPT2 expression in NSCLC highlights its importance in regulating cell migration and invasion during EMT. CONCLUSIONS: Consistent with GFPT2 promoting cancer progression, we find that elevated GFPT2 expression correlates with poor clinical outcome in NSCLC. Modulation of GFPT2 activity offers a potentially important therapeutic target to combat NSCLC disease progression.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Sirtuínas/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Transdução de Sinais , Ativação TranscricionalRESUMO
Chronically undernourished children become stunted during their first 2 years and thereafter bear burdens of ill health for the rest of their lives. Contributors to stunting include poor nutrition and exposure to pathogens, and parental history may also play a role. However, the epigenetic impact of a poor environment on young children is largely unknown. Here we show the unfolding pattern of histone H3 lysine 4 trimethylation (H3K4me3) in children and mothers living in an urban slum in Dhaka, Bangladesh. A pattern of chromatin modification in blood cells of stunted children emerges over time and involves a global decrease in methylation at canonical locations near gene start sites and increased methylation at ectopic sites throughout the genome. This redistribution occurs at metabolic and immune genes and was specific for H3K4me3, as it was not observed for histone H3 lysine 27 acetylation in the same samples. Methylation changes in stunting globally resemble changes that occur in vitro in response to altered methylation capacity, suggesting that reduced levels of one-carbon nutrients in the diet play a key role in stunting in this population. A network of differentially expressed genes in stunted children reveals effects on chromatin modification machinery, including turnover of H3K4me3, as well as posttranscriptional gene regulation affecting immune response pathways and lipid metabolism. Consistent with these changes, reduced expression of the endocytic receptor gene LDL receptor 1 (LRP1) is a driver of stunting in a mouse model, suggesting a target for intervention.
Assuntos
Histonas/genética , Desnutrição/genética , Animais , Epigênese Genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Desnutrição/metabolismo , Metilação , CamundongosRESUMO
Large-scale, genome-wide studies report that RNA binding proteins are altered in cancers, but it is unclear how these proteins control tumor progression. We found that the RNA-editing protein ADAR (adenosine deaminase acting on double-stranded RNA) acted as a facilitator of lung adenocarcinoma (LUAD) progression through its ability to stabilize transcripts encoding focal adhesion kinase (FAK). In samples from 802 stage I LUAD patients, increased abundance of ADAR at both the mRNA and protein level correlated with tumor recurrence. Knocking down ADAR in LUAD cells suppressed their mesenchymal properties, migration, and invasion in culture. Analysis of gene expression patterns in LUAD cells identified ADAR-associated enrichment of a subset of genes involved in cell migration pathways; among these, FAK is the most notable gene whose expression was increased in the presence of ADAR. Molecular analyses revealed that ADAR posttranscriptionally increased FAK protein abundance by binding to the FAK transcript and editing a specific intronic site that resulted in the increased stabilization of FAK mRNA. Pharmacological inhibition of FAK blocked ADAR-induced invasiveness of LUAD cells, suggesting a potential therapeutic application for LUAD that has a high abundance of ADAR.
Assuntos
Adenocarcinoma/enzimologia , Adenosina Desaminase/metabolismo , Movimento Celular , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Pulmonares/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adenosina Desaminase/genética , Linhagem Celular , Estabilidade Enzimática , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Ligação a RNA/genéticaRESUMO
Breast cancer metastasis suppressor 1 (BRMS1) is decreased in non-small cell lung cancer (NSCLC) and other solid tumors, and its loss correlates with increased metastases. We show that BRMS1 is posttranslationally regulated by TNF-induced casein kinase 2 catalytic subunit (CK2α') phosphorylation of nuclear BRMS1 on serine 30 (S30), resulting in 14-3-3ε-mediated nuclear exportation, increased BRMS1 cytosolic expression, and ubiquitin-proteasome-induced BRMS1 degradation. Using our in vivo orthotopic mouse model of lung cancer metastases, we found that mutation of S30 in BRMS1 or the use of the CK2-specific small-molecule inhibitor CX4945 abrogates CK2α'-induced cell migration and invasion and decreases NSCLC metastasis by 60-fold. Analysis of 160 human NSCLC specimens confirmed that tumor CK2α' and cytoplasmic BRMS1 expression levels are associated with increased tumor recurrence, metastatic foci, and reduced disease-free survival. Collectively, we identify a therapeutically exploitable posttranslational mechanism by which CK2α-mediated degradation of BRMS1 promotes metastases in lung cancer. Cancer Res; 76(9); 2675-86. ©2016 AACR.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia , Proteínas Repressoras/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caseína Quinase II/metabolismo , Modelos Animais de Doenças , Intervalo Livre de Doença , Imunofluorescência , Xenoenxertos , Imuno-Histoquímica , Imunoprecipitação , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Camundongos , Análise Serial de TecidosRESUMO
Breast cancer metastasis suppressor 1 (BRMS1) is downregulated in non-small cell lung cancer (NSCLC), and its reduction correlates with disease progression. Herein, we investigate the mechanisms through which loss of the BRMS1 gene contributes to epithelial-to-mesenchymal transition (EMT). Using a short hairpin RNA (shRNA) system, we show that loss of BRMS1 promotes basal and transforming growth factor beta-induced EMT in NSCLC cells. NSCLC cells expressing BRMS1 shRNAs (BRMS1 knockdown [BRMS1(KD)]) display mesenchymal characteristics, including enhanced cell migration and differential regulation of the EMT markers. Mesenchymal phenotypes observed in BRMS1(KD) cells are dependent on RelA/p65, the transcriptionally active subunit of nuclear factor kappa B (NF-κB). In addition, chromatin immunoprecipitation analysis demonstrates that loss of BRMS1 increases Twist1 promoter occupancy of RelA/p65 K310-a key histone modification associated with increased transcription. Knockdown of Twist1 results in reversal of BRMS1(KD)-mediated EMT phenotypic changes. Moreover, in our animal model, BRMS1(KD)/Twist1(KD) double knockdown cells were less efficient in establishing lung tumors than BRMS1(KD) cells. Collectively, this study demonstrates that loss of BRMS1 promotes malignant phenotypes that are dependent on NF-κB-dependent regulation of Twist1. These observations offer fresh insight into the mechanisms through which BRMS1 regulates the development of metastases in NSCLC.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Transição Epitelial-Mesenquimal , Genes Supressores de Tumor , Histonas/metabolismo , Humanos , Metástase Linfática , Camundongos , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Proteínas Nucleares/genética , Fenótipo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína 1 Relacionada a Twist/genética , CicatrizaçãoRESUMO
Soluble growth factors and cytokines within the tumor microenvironment aid in the induction of the epithelial-to-mesenchymal transition (EMT). Although EMT promotes the development of cancer-initiating cells (CIC), cellular mechanisms by which cancer cells maintain mesenchymal phenotypes remain poorly understood. Work presented here indicates that induction of EMT stimulates non-small cell lung cancer (NSCLC) to secrete soluble factors that function in an autocrine fashion. Using gene expression profiling of all annotated and predicted secreted gene products, we find that NF-κB activity is required to upregulate INHBA/Activin, a morphogen in the TGFß superfamily. INHBA is capable of inducing and maintaining mesenchymal phenotypes, including the expression of EMT master-switch regulators and self-renewal factors that sustain CIC phenotypes and promote lung metastasis. Our work demonstrates that INHBA mRNA and protein expression are commonly elevated in primary human NSCLC and provide evidence that INHBA is a critical autocrine factor that maintains mesenchymal properties of CICs to promote metastasis in NSCLC.
Assuntos
Ativinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Subunidades beta de Inibinas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mesoderma/metabolismo , Mesoderma/patologia , Células-Tronco Neoplásicas/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Esferoides Celulares , Regulação para CimaRESUMO
Expression of the breast cancer metastasis suppressor 1 (BRMS1) protein is dramatically reduced in non-small cell lung cancer (NSCLC) cells and in primary human tumors. Although BRMS1 is a known suppressor of metastasis, the mechanisms through which BRMS1 functions to regulate cell migration and invasion in response to specific NSCLC driver mutations are poorly understood. To experimentally address this, we utilized immortalized human bronchial epithelial cells in which p53 was knocked down in the presence of oncogenic K-RasV12 (HBEC3-p53KD-K-RasV12). These genetic alterations are commonly found in NSCLC and are associated with a poor prognosis. To determine the importance of BRMS1 for cytoskeletal function, cell migration and invasion in our model system we stably knocked down BRMS1. Here, we report that loss of BRMS1 in HBEC3-p53KD-K-RasV12 cells results in a dramatic increase in cell migration and invasion compared to controls that expressed BRMS1. Moreover, the loss of BRMS1 resulted in additional morphological changes including F-actin re-distribution, paxillin accumulation at the leading edge of the lamellapodium, and cellular shape changes resembling mesenchymal phenotypes. Importantly, re-expression of BRMS1 restores, in part, cell migration and invasion; however it does not fully reestablish the epithelial phenotype. These finding suggests that loss of BRMS1 results in a permanent, largely irreversible, mesenchymal phenotype associated with increased cell migration and invasion. Collectively, in NSCLC cells without p53 and expression of oncogenic K-Ras our study identifies BRMS1 as a key regulator required to maintain a cellular morphology and cytoskeletal architecture consistent with an epithelial phenotype.
Assuntos
Células Epiteliais Alveolares/metabolismo , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética , Proteínas ras/genética , Citoesqueleto de Actina/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Técnicas de Silenciamento de Genes , Humanos , Camundongos Nus , Mutação , Paxilina/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Repressoras , Proteínas ras/metabolismoRESUMO
BACKGROUND: The epithelial-mesenchymal transition (EMT) is a de-differentiation process required for wound healing and development. In tumors of epithelial origin aberrant induction of EMT contributes to cancer progression and metastasis. Studies have begun to implicate epigenetic reprogramming in EMT; however, the relationship between reprogramming and the coordination of cellular processes is largely unexplored. We have previously developed a system to study EMT in a canonical non-small cell lung cancer (NSCLC) model. In this system we have shown that the induction of EMT results in constitutive NF-κB activity. We hypothesized a role for chromatin remodeling in the sustained deregulation of cellular signaling pathways. RESULTS: We mapped sixteen histone modifications and two variants for epithelial and mesenchymal states. Combinatorial patterns of epigenetic changes were quantified at gene and enhancer loci. We found a distinct chromatin signature among genes in well-established EMT pathways. Strikingly, these genes are only a small minority of those that are differentially expressed. At putative enhancers of genes with the 'EMT-signature' we observed highly coordinated epigenetic activation or repression. Furthermore, enhancers that are activated are bound by a set of transcription factors that is distinct from those that bind repressed enhancers. Upregulated genes with the 'EMT-signature' are upstream regulators of NF-κB, but are also bound by NF-κB at their promoters and enhancers. These results suggest a chromatin-mediated positive feedback as a likely mechanism for sustained NF-κB activation. CONCLUSIONS: There is highly specific epigenetic regulation at genes and enhancers across several pathways critical to EMT. The sites of these changes in chromatin state implicate several inducible transcription factors with critical roles in EMT (NF-κB, AP-1 and MYC) as targets of this reprogramming. Furthermore, we find evidence that suggests that these transcription factors are in chromatin-mediated transcriptional feedback loops that regulate critical EMT genes. In sum, we establish an important link between chromatin remodeling and shifts in cellular reprogramming.
RESUMO
The epithelial-to-mesenchymal transition (EMT) is a de-differentiation process that has been implicated in metastasis and the generation of cancer initiating cells (CICs) in solid tumors. To examine EMT in non-small cell lung cancer (NSCLC), we utilized a three dimensional (3D) cell culture system in which cells were co-stimulated with tumor necrosis factor alpha (TNF) and transforming growth factor beta (TGFß). NSCLC spheroid cultures display elevated expression of EMT master-switch transcription factors, TWIST1, SNAI1/Snail1, SNAI2/Slug and ZEB2/Sip1, and are highly invasive. Mesenchymal NSCLC cultures show CIC characteristics, displaying elevated expression of transcription factors KLF4, SOX2, POU5F1/Oct4, MYCN, and KIT. As a result, these putative CIC display a cancer "stem-like" phenotype by forming lung metastases under limiting cell dilution. The pleiotropic transcription factor, NF-κB, has been implicated in EMT and metastasis. Thus, we set out to develop a NSCLC model to further characterize the role of NF-κB activation in the development of CICs. Here, we demonstrate that induction of EMT in 3D cultures results in constitutive NF-κB activity. Furthermore, inhibition of NF-κB resulted in the loss of TWIST1, SNAI2, and ZEB2 induction, and a failure of cells to invade and metastasize. Our work indicates that NF-κB is required for NSCLC metastasis, in part, by transcriptionally upregulating master-switch transcription factors required for EMT.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transformação Celular Neoplásica/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , NF-kappa B/genética , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Esferoides Celulares , Células Tumorais CultivadasRESUMO
The mechanisms through which the metastasis suppressor gene BRMS1 functions are poorly understood. Herein, we report the identification of a previously undescribed E3 ligase function of BRMS1 on the histone acetyltransferase p300. BRMS1 induces polyubiquitination of p300, resulting in its proteasome-mediated degradation. We identify BRMS1 as the first eukaryote structural mimic of the bacterial IpaH E3 ligase family and establish that the evolutionarily conserved CXD motif located in BRMS1 is responsible for its E3 ligase function. Mutation of this E3 ligase motif not only abolishes BRMS1-induced p300 polyubiquitination and degradation, but importantly, dramatically reduces the metastasis suppressor function of BRMS1 in both in vitro and in vivo models of lung cancer metastasis.