Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1388841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835860

RESUMO

Trichoderma strains used in vineyards for the control of grapevine trunk diseases (GTDs) present a promising alternative to chemical products. Therefore, the isolation and characterization of new indigenous Trichoderma strains for these purposes is a valuable strategy to favor the adaptation of these strains to the environment, thus improving their efficacy in the field. In this research, a new Trichoderma species, Trichoderma carraovejensis, isolated from vineyards in Ribera de Duero (Spain) area, has been identified and phylogenetically analyzed using 20 housekeeping genes isolated from the genome of 24 Trichoderma species. A morphological description and comparison of the new species has also been carried out. In order to corroborate the potential of T. carraovejensis as a biological control agent (BCA), confrontation tests against pathogenic fungi, causing various GTDs, have been performed in the laboratory. The compatibility of T. carraovejensis with different pesticides and biostimulants has also been assessed. This new Trichoderma species demonstrates the ability to control pathogens such as Diplodia seriata, as well as high compatibility with powdered sulfur-based pesticides. In conclusion, the autochthonous species T. carraovejensis can be an effective alternative to complement the currently used strategies for the control of wood diseases in its region of origin.

2.
Plants (Basel) ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840235

RESUMO

Native strains of Trichoderma in vineyard soil represent an opportunity for reducing the incidence of grapevine trunk diseases (GTDs) in vineyards. Moreover, its relationship with the environment (physicochemical soil characteristics and farming management practices) remains unclear. In the current study, a survey was carried out on farming management used by viticulturists, and soil samples were studied to analyze their physicochemical properties and to isolate Trichoderma strains. Later, statistical analyses were performed to identify possible correlations between Trichoderma populations, soil management and soil characteristics. In addition, in vitro tests, including antibiosis and mycoparasitism, were performed to select those Trichoderma strains able to antagonize Phaeoacremonium minimum. In this study a positive correlation was found between the iron content and pH in the soil, and a lower pH increases Trichoderma populations in soils. Vineyard management also affects Trichoderma populations in the soil, negatively in the case of fertilization and tillage and positively in the case of herbicide spraying. Two Trichoderma native strains were selected as potential biocontrol agents (Trichoderma gamsii T065 and Trichoderma harzianum T087) using antibiosis and mycoparasitism as mechanisms of action. These results led to the conclusion that native Trichoderma strains hold great potential as biological control agents and as producers of secondary metabolites.

3.
Front Plant Sci ; 13: 1005906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452093

RESUMO

The trichothecene toxin-producing fungus Trichoderma arundinaceum has potential as a biological control agent. However, most biocontrol studies have focused only on one strain, IBT 40837. In the current study, three Trichoderma isolates recovered from bean-field soils produced the trichothecene harzianum A (HA) and trichodermol, the latter being an intermediate in the HA biosynthesis. Based on phylogenetic analysis, the three isolates were assigned to the species T. arundinaceum. Their genome sequences had a high degree of similarity to the reference IBT 40837 strain, in terms of total genome size, number of predicted genes, and diversity of putative secondary metabolite biosynthetic gene clusters. HA production by these bean-field isolates conferred significant in vitro antifungal activity against Rhizoctonia solani and Sclerotinia sclerotiorum, which are some of the most important bean pathogens. Furthermore, the bean-field isolates stimulated germination of bean seeds and subsequent growth of above ground parts of the bean plant. Transcriptomic analysis of bean plants inoculated with these T. arundinaceum bean-field soil isolates indicated that HA production significantly affected expression of plant defense-related genes; this effect was particularly significant in the expression of chitinase-encoding genes. Together, these results indicate that Trichoderma species producing non-phytotoxic trichothecenes can induce defenses in plants without negatively affecting germination and development.

4.
J Fungi (Basel) ; 8(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36547599

RESUMO

Farnesol is an isoprenoid intermediate in the mevalonate (MVA) pathway and is produced by the dephosphorylation of farnesyl diphosphate. Farnesol plays a central role in cell growth and differentiation, controls production of ubiquinone and ergosterol, and participates in the regulation of filamentation and biofilm formation. Despite these important functions, studies of farnesol in filamentous fungi are limited, and information on its effects on antifungal and/or biocontrol activity is scarce. In the present article, we identified the Trichoderma harzianum gene dpp1, encoding a diacylglycerol pyrophosphatase that catalyzes production of farnesol from farnesol diphosphate. We analyzed the function of dpp1 to address the importance of farnesol in Trichoderma physiology and ecology. Overexpression of dpp1 in T. harzianum caused an expected increase in farnesol production as well as a marked change in squalene and ergosterol levels, but overexpression did not affect antifungal activity. In interaction with plants, a dpp1-overexpressing transformant acted as a sensitizing agent in that it up-regulated expression of plant defense salicylate-related genes in the presence of a fungal plant pathogen. In addition, toxicity of farnesol on Trichoderma and plants was examined. Finally, a phylogenetic study of dpp1 was performed to understand its evolutionary history as a primary metabolite gene. This article represents a step forward in the acquisition of knowledge on the role of farnesol in fungal physiology and in fungus-environment interactions.

5.
Insects ; 13(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36554996

RESUMO

Acanthoscelides obtectus is an insect pest that attacks wild and cultivated common beans (Phaseolus vulgaris L). Four Trichoderma strains, the T. arundinaceum IBT 40837 wild-type strain (=Ta37), a producer of trichothecene harzianum A (HA), two transformants of T. arundinaceum strain, Ta37-17.139 (=Δtri17) and Ta37-23.74 (=Δtri23), and the T. brevicompactum IBT 40841 wild-type strain (=Tb41), which produces the trichothecene trichodermin, were assessed to establish their direct effect on insect attacks and their indirect effect on the plants grown from the beans treated with those fungal strains and exposed to insect attacks. Treatments of bean seeds with different Trichoderma strains led to different survival rates in the insects, and the Tb41 strain caused the lowest survival rate of all. An 86.10% of the insect cadavers (in contact with Δtri23) showed growth of this strain. This was the treatment that attracted the greatest number of insects. The daily emergence was reduced in beans treated with the Ta37, Tb41, and Δtri17 strains. The undamaged beans treated with Ta37 and Δtri23 showed a high capacity of germination (80.00% and 75.00%, respectively), whereas the Δtri17 and Tb41 treatments increased the capacity of germination in the damaged beans (66.67%). The undamaged beans treated with Δtri23 had the greatest dry weights for the aerial part (4.22 g) and root system in the plants (0.62 g). More studies on the mechanisms of insect control, plant growth promotion, and trichodermol and trichodermin production by Δtri23 and Tb41, respectively, should be explored in order to commercialize these fungal species on a large scale.

6.
J Fungi (Basel) ; 8(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35736086

RESUMO

Pesticides of chemical synthesis have mainly been used to control pests, diseases and adventitious plants up until now. However, it has been shown that some pesticides can remain in the soil for long periods of time, thus affecting the development of organisms in the rhizosphere as well as human health, which are two of the most noteworthy side effects. The aim of this research was to analyze the compatibility of autochthonous Trichoderma strains with different synthetic fungicides, acaricides, insecticides (including an entomopathogenic fungus) and herbicides. Sulfur encouraged the growth of all autochthonous strains assayed, and the combination Trichoderma-B. bassiana did not disturb their growth. So, the combination of the autochthonous Trichoderma strains with these organic pesticides will be a positive strategy to apply in the field to control pests and some diseases. Conventional pesticides modified the development of all autochthonous Trichoderma strains, demonstrating that not only do they affect weeds, fungus or pests but also rhizosphere microorganisms. In conclusion, conventional pesticides indiscriminately used to control pests, diseases and weeds could reduce the development of autochthonous Trichoderma strains, especially fungicides and herbicides.

7.
J Fungi (Basel) ; 7(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205316

RESUMO

Humulus lupulus L. is a long-lived, perennial, herbaceous, and dioecious climbing plant. The foremost producers in the European Union are Germany, the Czech Republic, Poland, Slovenia, and Spain. The Spanish cultivated area is concentrated in the province of León. Powdery mildew, caused by Podosphaera macularis, menaces hop production and quality in all hop growing regions located in the Northern hemisphere, colonizing leaves, petioles, inflorescences, and finally cones. In this work, powdery mildew control was monitored, comparing nine fungicide strategies: five organics, two integrated disease management (IDM)-based, with and without Nutragreen® nanoscale carrier, and two conventional treatments (CON) with and without Nutragreen® nanoscale carrier. The organic treatments were able to diminish P. macularis on leaves, but no effect was observed in cones. CON treatments reduced the infection on leaves and cones and increased the cone quantity and quality. Likewise, IDM-based treatments provided satisfactory results as they diminished powdery mildew on leaves and cones. Finally, dose reduction using a Nutragreen® nanoscale carrier showed beneficial effects in the control of powdery mildew compared to the commercial dose. Hence, the use of nanoscale carries permits a 30% reduction in pesticide dose, which optimizes yield and hop quality, reduces risks linked to pesticides, and aids in compliance with public and international policy demands.

8.
J Fungi (Basel) ; 7(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806125

RESUMO

The interest in the study of microbiological interactions mediated by volatile organic compounds (VOCs) has steadily increased in the last few years. Nevertheless, most assays still rely on the use of non-specific materials. We present a new tool, the volatile organic compound chamber (VOC chamber), specifically designed to perform these experiments. The novel devices were tested using four Trichoderma strains against Fusarium oxysporum and Rhizoctonia solani. We demonstrate that VOC chambers provide higher sensitivity and selectivity between treatments and higher homogeneity of results than the traditional method. VOC chambers are also able to test both vented and non-vented conditions. We prove that ventilation plays a very important role regarding volatile interactions, up to the point that some growth-inhibitory effects observed in closed environments switch to promoting ones when tested in vented conditions. This promoting activity seems to be related to the accumulation of squalene by T. harzianum. The VOC chambers proved to be an easy, homogeneous, flexible, and repeatable method, able to better select microorganisms with high biocontrol activity and to guide the future identification of new bioactive VOCs and their role in microbial interactions.

9.
J Fungi (Basel) ; 6(4)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081231

RESUMO

Fungal species from the genus Fusarium are important soil-borne pathogens worldwide, causing significant economic losses in diverse crops. The need to find sustainable solutions against this disease has led to the development of new strategies-for instance, the use of biocontrol agents. In this regard, non-pathogenic Fusarium isolates have demonstrated their ability to help other plants withstand subsequent pathogen attacks. In the present work, several Fusarium isolates were evaluated in climatic chambers to identify those presenting low or non-pathogenic behavior. The inoculation with a low-pathogenic isolate of the fungus did not affect the development of the plant, contrary to the results observed in plants inoculated with pathogenic isolates. The expression of defense-related genes was evaluated and compared between plants inoculated with pathogenic and low-pathogenic Fusarium isolates. Low-pathogenic isolates caused a general downregulation of several plant defense-related genes, while pathogenic ones produced an upregulation of these genes. This kind of response to low-pathogenic fungal isolates has been already described for other plant species and fungal pathogens, being related to enhanced tolerance to later pathogen attacks. The results here presented suggest that low-pathogenic F. oxysporum and F. solani isolates may have potential biocontrol activity against bean pathogens via induced and systemic responses in the plant.

10.
J Fungi (Basel) ; 6(3)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957718

RESUMO

Self-inhibitory processes are a common feature shared by different organisms. One of the main mechanisms involved in these interactions regarding microorganisms is the release of toxic diffusible substances into the environment. These metabolites can exert both antimicrobial effects against other organisms as well as self-inhibitory ones. The in vitro evaluation of these effects against other organisms has been widely used to identify potential biocontrol agents against phytopathogenic microorganisms. In the present study, we performed membrane assays to compare the self-inhibitory effects of soluble metabolites produced by several Trichoderma isolates and their antifungal activity against a phytopathogenic strain of Fusarium oxysporum. The results demonstrated that Trichoderma spp. present a high self-inhibitory activity in vitro, being affected in both their growth rate and the macroscopic structure of their colonies. These effects were highly similar to those exerted against F. oxysporum in the same conditions, showing no significant differences in most cases. Consequently, membrane assays may not be very informative by themselves to assess putative biocontrol capabilities. Therefore, different methods, or a combination of antifungal and self-inhibitory experiments, could be a better approach to evaluate the potential biocontrol activity of microbial strains in order to pre-select them for further in vivo trials.

11.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696057

RESUMO

The common bean (Phaseolus vulgaris L.) is one of the most important food legume crops worldwide that is affected by phytopathogenic fungi such as Rhizoctonia solani. Biological control represents an effective alternative method for the use of conventional synthetic chemical pesticides for crop protection. Trichoderma spp. have been successfully used in agriculture both to control fungal diseases and to promote plant growth. The response of the plant to the invasion of fungi activates defensive resistance responses by inducing the expression of genes and producing secondary metabolites. The purpose of this work was to analyze the changes in the bean metabolome that occur during its interaction with pathogenic (R. solani) and antagonistic (T. velutinum) fungi. In this work, 216 compounds were characterized by liquid chromatography mass spectrometry (LC-MS) analysis but only 36 were noted as significantly different in the interaction in comparison to control plants and they were tentatively characterized. These compounds were classified as: two amino acids, three peptides, one carbohydrate, one glycoside, one fatty acid, two lipids, 17 flavonoids, four phenols and four terpenes. This work is the first attempt to determine how the presence of T. velutinum and/or R. solani affect the defense response of bean plants using untargeted metabolomics analysis.


Assuntos
Metaboloma , Phaseolus/microbiologia , Rhizoctonia/fisiologia , Trichoderma/fisiologia , Compostos Fitoquímicos/análise , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Análise de Componente Principal
12.
J Econ Entomol ; 111(6): 2585-2591, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30165386

RESUMO

Xylotrechus arvicola (Olivier) (Coleoptera: Cerambycidae) is an important pest in vineyards (Vitis vinifera) in the main wine-producing regions of Spain. Effective control of this pest is difficult due to the biology of this pest. Biological control agents (BCAs) have proven to be an effective tool in controlling and preventing the spread of a variety of plant pests and diseases. Consequently, the aim of the present study was to assess the capacity of different Trichodema spp., isolated from various vineyards and one commercial isolate of Beauveria bassiana Vuillemin (Hypocreales: Cordycipitaceae), as BCAs of X. arvicola. Isolates of Trichoderma spp. and one isolate of B. bassiana were evaluated against X. arvicola eggs, larvae and adults. Trichoderma harzianum and Trichoderma gamsii demonstrated a good ovicidal control, 100.0% with T. harzianum and over 92.0% with T. gamsii. These Trichoderma strains achieved an over 65.0% larval mortality and 87.5% adult mortality. B. bassiana was the most effective treatment against X. arvicola larvae. These results confirm that Trichoderma spp. can be used to inhibit egg development. In addition, Trichoderma spp. and B. bassiana can help to prevent larvae boring into vines and to kill adults. Therefore, Trichoderma spp., especially T. harzianum and T. gamsii, and B. bassiana can be considered as highly effective BCAs of X. arvicola in vineyards.


Assuntos
Beauveria/fisiologia , Besouros , Interações Hospedeiro-Patógeno , Controle Biológico de Vetores , Trichoderma/fisiologia , Animais , Larva/microbiologia , Óvulo/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA