Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Discov Nano ; 18(1): 159, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127269

RESUMO

Textile grade polyacrylonitrile (PAN) was used as a precursor material for carbon fiber preparation. E-beam irradiated polyacrylonitrile grafted carbon nanofibers were dispersed in polyacrylonitrile solution (dissolved in dimethyl formamide). Carbon nanofibers (CNF) infused polyacrylonitrile solution was wet spun on a lab-scale wet-spinning setup to form 50 to 70 µm diameter fibers with 3.2 wt.% CNF-PAN, 6.4 wt.% CNF-PAN, and neat PAN. Precursor fibers were characterized for thermal, mechanical and morphological properties using various techniques. Drawing the precursor fibers further enhanced polymer chain orientation and coalesced the voids, enhancing tensile strength and modulus by more than 150% compared to those of the undrawn fibers. Precursor composite fibers on carbonization showed enhanced strength, compared to that of pristine PAN fibers, by four times and stiffness by 14 times. The carbon-carbon composite fibers were further characterized with SEM/FIB, XRD and tensile strength. The property improvements were dependent on the uniform distribution of carbon nanofibers, and surface modification of carbon nanofibers further enabled their dispersion in the composite fibers. Furthermore, 3.2 wt.% CNFs in PAN fibers showed maximum improvement in properties compared to 6.4 wt.% CNF in PAN fibers, indicating that the property enhancements go through a maximum and then drop off due to challenge in getting uniform distribution of nanofibers.

2.
J Control Release ; 355: 434-445, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758834

RESUMO

Most patients that will be treated with soft nanoparticles (NPs) will be obese. Yet, NP testing, which begins with pharmacokinetic (PK) and toxicity studies, is carried out almost exclusively in lean rodents having healthy livers and low inflammation. To address this knowledge gap, we determined the PK and toxicity of tail-vein-injected, PEG-based cylindrical nanoparticles (CNPs) and PEGylated liposomes (PLs) as a function of obesity, liver health, and inflammation in leptin-deficient ob/ob and wild-type C57BL/6 J mice. CNPs localized faster to obese livers than to healthy livers within 24 h of injection. PLs localized faster to obese livers than to healthy livers but only 30 min post-injection. Afterwards PL localization to lean livers was higher than localization to obese livers. Overall, PL liver signal peaked ∼6 h post-injection in lean mice, ∼24 h post-injection in heavy mice, and âˆ¼ 48 h post-injection in obese mice. CNPs and PLs were non-toxic to mouse livers as assessed by histology; they reduced many cytokine and chemokine levels that were elevated by obesity. Liver macrophage depletion reduced CNP and PL liver localization as expected; liver sinusoidal endothelial cell (LSEC) depletion reduced PL liver localization but surprisingly increased CNP liver localization. The intensity of RAW264.7 macrophages was higher after CNP incubations than with PL incubations; conversely, the intensity of LSECs was higher after PL incubations than with CNP incubations. This shows the potential for key differences in NP-liver interactions. Triggering inflammation by administering lipopolysaccharide (LPS) to mice increased CNP liver localization but decreased PL liver localization. The results show that obesity and inflammation in a mouse model and in vitro affect soft PEG-based NP interaction with macrophages and LSECs, but also that these NPs can reduce pro-inflammatory pathways increased by obesity.


Assuntos
Fígado , Nanopartículas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Obesidade/metabolismo , Inflamação/patologia , Lipossomos/metabolismo , Camundongos Obesos
3.
Front Chem ; 10: 833307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281559

RESUMO

Chain exchange behaviors in self-assembled block copolymer (BCP) nanoparticles (NPs) at room temperature are investigated through observations of structural differences between parent and binary systems of BCP NPs with and without crosslinked domains. Pairs of linear diblock or triblock, and branched star-like polystyrene-poly(2-vinylpyridine) (PS-PVP) copolymers that self-assemble in a PVP-selective mixed solvent into BCP NPs with definite differences in size and self-assembled morphology are combined by diverse mixing protocols and at different crosslinking densities to reveal the impact of chain exchange between BCP NPs. Clear structural evolution is observed by dynamic light scattering and AFM and TEM imaging, especially in a blend of triblock + star copolymer BCP NPs. The changes are ascribed to the chain motion inherent in the dynamic equilibrium, which drives the system to a new structure, even at room temperature. Chemical crosslinking of PVP corona blocks suppresses chain exchange between the BCP NPs and freezes the nanostructures at a copolymer crosslinking density (CLD) of ∼9%. This investigation of chain exchange behaviors in BCP NPs having architectural and compositional complexity and the ability to moderate chain motion through tailoring the CLD is expected to be valuable for understanding the dynamic nature of BCP self-assemblies and diversifying the self-assembled structures adopted by these systems. These efforts may guide the rational construction of novel polymer NPs for potential use, for example, as drug delivery platforms and nanoreactors.

4.
J Control Release ; 337: 448-457, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352314

RESUMO

Targeting cell-surface receptors with nanoparticles (NPs) is a crucial aspect of nanomedicine. Here, we show that soft, flexible, elongated NPs with poly-ethylene-oxide (PEO) exteriors and poly-butadiene (PBD) interiors - PEO-PBD filomicelles - interact directly with the major high-density lipoprotein (HDL) receptor and SARS-CoV-2 uptake factor, SR-BI. Filomicelles have a ~ 6-fold stronger interaction with reconstituted SR-BI than PEO-PBD spheres. HDL, and the lipid transport inhibitor, BLT-1, both block the uptake of filomicelles by macrophages and Idla7 cells, the latter are constitutively expressing SR-BI (Idla7-SR-BI). Co-injections of HDL and filomicelles into wild-type mice reduced filomicelle signal in the liver and increased filomicelle plasma levels. The same was true with SCARB1-/- mice. SR-BI binding is followed by phagocytosis for filomicelle macrophage entry, but only SR-BI is needed for entry into Idla7-SR-BI cells. PEO-PBD spheres did not interact strongly with SR-BI in the above experiments. The results show elongated PEO-based NPs can bind cells via cooperativity among SR-BI receptors on cell surfaces.


Assuntos
COVID-19 , Nanopartículas , Animais , Antígenos CD36 , Humanos , Lipoproteínas HDL/metabolismo , Camundongos , Receptores Imunológicos , SARS-CoV-2 , Receptores Depuradores Classe B/genética
5.
J Chem Phys ; 151(12): 124906, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575207

RESUMO

Fast deformation of entangled melts is known to cause chain stretching due to affinelike straining of the entanglement network. Since the chain deformation may also result in perturbations of covalent bond angles and bond length, there are always possible enthalpic effects. In this study, we first subject polystyrene and PMMA of different molecular weights to either uniaxial melt extension or planar extension and subsequently impose rapid thermal quenching to preserve the chain deformation. Then, such pre-melt-deformed samples are annealed at various temperatures below the glass transition temperature Tg. During annealing, these samples can undergo appreciable contraction on a time scale much shorter than the alpha relaxation time. Significant retractive stress is observed when such contracting samples are held fixed during the annealing. The stress level can be nearly as high as the Cauchy stress produced during melt stretching. These observations not only allowed us to investigate glassy chain dynamics as well as the molecular nature of mechanical stress but may also suggest that pre-melt-stretched polymers can cause segmental mobilization in the glassy state. The available evidence indicates that the retractive stress is enthalpic in origin, associated with the conformational distortion at the bond level produced by melt stretching.

6.
Beilstein J Nanotechnol ; 9: 545-554, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527431

RESUMO

Carbon nanotube (CNT) yarns exhibit low tensile strength compared to conventional high-performance carbon fibers due to the facile sliding of CNTs past one another. Electron beam (e-beam) irradiation was employed for in a single-step surface modification of CNTs to improve the mechanical properties of this material. To this end, CNT yarns were simultaneously functionalized and crosslinked using acrylic acid (AA) and acrylonitrile (AN) in an e-beam irradiation process. The chemical modification of CNT yarns was confirmed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). The best improvement in mechanical properties was achieved on a sample treated with an aqueous solution of AA and subsequent irradiation. CNT yarn treatment with AA enhanced the strength (444.5 ± 68.4 MPa) by more than 75% and the modulus (21.5 ± 0.6 GPa) by more than 144% as compared to untreated CNT yarn (strength 251 ± 26.5 MPa and modulus 8.8 ± 1.2 GPa).

7.
RSC Adv ; 8(10): 5090-5098, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35542424

RESUMO

Multigraft copolymer superelastomers consisting of a poly(n-butyl acrylate) backbone and polystyrene side chains were synthesized and the viscoelastic properties of the non-sulfonated and sulfonated final materials were investigated using extensional rheology (SER3). The non-linear viscoelastic experiments revealed significantly increased true stresses (up to 10 times higher) after sulfonating only 2-3% of the copolymer while the materials maintained high elongation (<700%). The linear viscoelastic experiments showed that the storage and loss modulus are increased by sulfonation and that the copolymers can be readily tuned and further improved by increasing the number of branching points and the molecular weight of the backbone. In this way, we show that by tuning not only the molecular characteristics of the multigraft copolymers but also their architecture and chemical interaction, we can acquire thermoplastic superelastomer materials with desired viscoelastic properties.

8.
J Phys Chem B ; 121(51): 11511-11519, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183116

RESUMO

Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (Tg) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this work, we show experimental and simulation results demonstrating that in these materials Tg does not follow a universal scaling behavior with the volume of the structural units Vm (including monomer and counterion). Instead, Tg is significantly influenced by the chain flexibility and polymer dielectric constant. We propose a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe Tg in PolyILs. Our model enables design of new functional PolyILs with the desired Tg.

9.
J Am Chem Soc ; 139(48): 17285-17288, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29137455

RESUMO

Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. We report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI3 single crystals with Au/MAPbI3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA+) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI3 interface, whereas iodine anions (I-) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI3 interface due to the formation of MA+ vacancies, and an n-doped region near the Ag/MAPbI3 interface due to formation of I- vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.

10.
Nanotechnology ; 28(14): 145603, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28225356

RESUMO

Individual carbon nanotubes (CNTs) exhibit exceptional mechanical properties. However, difficulties remain in fully realizing these properties in CNT macro-assemblies, because the weak inter-tube forces result in the CNTs sliding past one another. Herein, a simple solid-state reaction is presented that enhances the mechanical properties of carbon nanotube fibers (CNTFs) through simultaneous covalent functionalization and crosslinking. This is the first chemical crosslinking proposed without the involvement of a catalyst or byproducts. The specific tensile strength of CNTFs obtained from the treatment employing a benzocyclobutene-based polymer is improved by 40%. Such improvement can be attributed to a reduced number of voids, impregnation of the polymer, and the formation of covalent crosslinks. This methodology is confirmed using both multiwalled nanotube (MWNT) powders and CNTFs. Thermogravimetric analysis, differential scanning calorimetry, x-ray photoelectron spectroscopy, and transmission electron microscopy of the treated MWNT powders confirm the covalent functionalization and formation of inter-tube crosslinks. This simple one-step reaction can be applied to industrial-scale production of high-strength CNTFs.

11.
Polymers (Basel) ; 9(10)2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30965798

RESUMO

Research on block copolymers (BCPs) has played a critical role in the development of polymer chemistry, with numerous pivotal contributions that have advanced our ability to prepare, characterize, theoretically model, and technologically exploit this class of materials in a myriad of ways in the fields of chemistry, physics, material sciences, and biological and medical sciences. The breathtaking progress has been driven by the advancement in experimental techniques enabling the synthesis and characterization of a wide range of block copolymers with tailored composition, architectures, and properties. In this review, we briefly discussed the recent progress in BCP synthesis, followed by a discussion of the fundamentals of self-assembly of BCPs along with their applications.

12.
Phys Rev Lett ; 116(3): 038302, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26849618

RESUMO

The properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp contrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can elucidate these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.

13.
ChemSusChem ; 8(21): 3595-604, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26482115

RESUMO

The development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethyl-terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability≈6800 Barrer; CO2 /N2 selectivity≈14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.


Assuntos
Dióxido de Carbono/isolamento & purificação , Reagentes de Ligações Cruzadas/química , Dimetilpolisiloxanos/química , Membranas Artificiais , Norbornanos/química , Estrutura Molecular , Permeabilidade , Propriedades de Superfície
14.
Biomaterials ; 73: 131-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26408998

RESUMO

Commercial polypropylene pelvic mesh products were characterized in terms of their chemical compositions and molecular weight characteristics before and after implantation. These isotactic polypropylene mesh materials showed clear signs of oxidation by both Fourier-transform infrared spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS). The oxidation was accompanied by a decrease in both weight-average and z-average molecular weights and narrowing of the polydispersity index relative to that of the non-implanted material. SEM revealed the formation of transverse cracking of the fibers which generally, but with some exceptions, increased with implantation time. Collectively these results, as well as the loss of flexibility and embrittlement of polypropylene upon implantation as reported by other workers, may only be explained by in vivo oxidative degradation of polypropylene.


Assuntos
Oxigênio/química , Polipropilenos/química , Telas Cirúrgicas , Antioxidantes/química , Materiais Biocompatíveis , Desenho de Equipamento , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Peso Molecular , Polímeros/química , Próteses e Implantes , Falha de Prótese , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Termogravimetria
15.
Soft Matter ; 11(32): 6509-19, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26186404

RESUMO

Self-assembly of semi-flexible/flexible block copolymers in a selective solvent is examined using a set of diblock copolymers where the chain microstructure of the semi-flexible block is manipulated in order to tune chain stiffness. Conceptually, the reduced conformational space of the semi-flexible block is anticipated to alter the way the chains pack, potentially changing the structure of self-assembled aggregates in comparison to flexible diblock copolymer analogs. Semi-flexible/flexible diblock copolymers comprised of poly(styrene)-block-poly(1,3-cyclohexadiene) (PS-b-PCHD) having systematic changes in chain microstructure, as captured by the ratio of 1,4/1,2-linkages between cyclohexenyl repeat units, and molecular weight of the PCHD blocks were synthesized using anionic polymerization. These diblocks were dissolved in tetrahydrofuran (THF), which is a preferential solvent for PS, and the structures formed were examined using laser light scattering and complementary imaging techniques. Results show that PS-b-PCHD copolymers with a chain microstructure of 90% 1,4/10% 1,2 linkages between cyclohexenyl repeat units (referred to simply as 90/10) are able to micellize, forming spherical structures, while diblocks of 70/30 and 50/50 1,4-to-1,2 ratios remain as single chains and ill-defined aggregates, respectively, when dissolved in THF. With inferences drawn from simple structural models, we speculate that this self-assembly behavior arises due to the change in the chain configuration with increasing content of 1,2-links in the backbone. This renders the chain with higher 1,2 content incapable of swelling in response to solvent and unable to pack into well-defined self-assembled structures.

16.
ACS Macro Lett ; 4(10): 1072-1076, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35614806

RESUMO

Polystyrene of different molecular weights and their binary mixtures are studied in terms of their various mechanical responses to uniaxial compression at different temperatures. PS of Mw = 25 kg/mol is completely brittle until it is above its glass transition temperature Tg. In contrast, upon incorporation of a high molecular weight component, PS mixtures turn from barely ductile a few degrees below its Tg to ductile over 40° below Tg. In the upper limit, a PS of Mw = 319 kg/mol yields and undergoes plastic flow, even at T = -70 °C. The observed dependence of mechanical responses on molecular weight and molecular weight distribution can be adequately rationalized by the idea that yielding and plastic compression are caused by chain networking.

17.
Nat Commun ; 4: 2297, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23921650

RESUMO

Researchers strive to produce nanoparticles with complexity in composition and structure. Although traditional spherical, cylindrical and membranous, or planar, nanostructures are ubiquitous, scientists seek more complicated geometries for potential functionality. Here we report the simple solution construction of multigeometry nanoparticles, disk-sphere and disk-cylinder, through a straightforward, molecular-level, blending strategy with binary mixtures of block copolymers. The multigeometry nanoparticles contain disk geometry in the core with either spherical patches along the disk periphery in the case of disk-sphere particles or cylindrical edges and handles in the case of the disk-cylinder particles. The portions of different geometry in the same nanoparticles contain different core block chemistry, thus also defining multicompartments in the nanoparticles. Although the block copolymers chosen for the blends are important for the definition of the final hybrid particles, the control of the kinetic pathway of assembly is critical for successful multigeometry particle construction.

18.
ACS Nano ; 7(5): 3854-67, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23573901

RESUMO

External electric fields align nanostructured block copolymers by either rotation of grains or nucleation and growth depending on how strongly the chemically distinct block copolymer components are segregated. In close vicinity to the order-disorder transition, theory and simulations suggest a third mechanism: selective disordering. We present a time-resolved small-angle X-ray scattering study that demonstrates how an electric field can indeed selectively disintegrate ill-aligned lamellae in a lyotropic block copolymer solution, while lamellae with interfaces oriented parallel to the applied field prevail. The present study adds an additional mechanism to the experimentally corroborated suite of mechanistic pathways, by which nanostructured block copolymers can align with an electric field. Our results further unveil the benefit of electric field assisted annealing for mitigating orientational disorder and topological defects in block copolymer mesophases, both in close vicinity to the order-disorder transition and well below it.


Assuntos
Eletricidade , Polímeros/química , Teoria Quântica , Rotação , Temperatura
19.
Langmuir ; 29(6): 1995-2006, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23259866

RESUMO

We have synthesized linear ABC triblock terpolymers containing poly(1,3-cyclohexadiene), PCHD, as an end block and characterized their morphologies in the melt. Specifically, we have studied terpolymers containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the other blocks. Systematically varying the ratio of 1,2- /1,4-microstructures of poly(1,3-cyclohexadiene), we have studied the effects of conformational asymmetry among the three blocks on the morphologies using transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and self-consistent field theory (SCFT) performed with PolySwift++. Our work reveals that the triblock terpolymer melts containing a high percentage of 1,2-microstructures in the PCHD block are disordered at 110 °C for all the samples, independent of sequence and volume fraction of the blocks. In contrast, the triblock terpolymer melts containing a high percentage of 1,4-microstructure form regular morphologies known from the literature. The accuracy of the SCFT calculations depends on calculating the χ parameters that quantify the repulsive interactions between different monomers. Simulations using χ values obtained from solubility parameters and group contribution methods are unable to reproduce the morphologies as seen in the experiments. However, SCFT calculations accounting for the enhancement of the χ parameter with an increase in the conformational asymmetry lead to an excellent agreement between theory and experiments. These results highlight the importance of conformational asymmetry in tuning the χ parameter and, in turn, morphologies in block copolymers.

20.
J Mater Chem B ; 1(34): 4212-4216, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261016

RESUMO

Charge-regulated synthesis of triangular prisms in aqueous solution using self-assembled polyelectrolyte micelles as templates is described in detail. Micelles formed from amphiphilic polystyrene-block-sulfonated poly(1,3-cyclohexadiene) (PS-b-sPCHD) serve as templates to direct the formation of novel triangular prisms of CuCl2 single crystals. We demonstrate that the edge lengths of these triangular prisms can be easily tailored at room temperature from the nanoscale to the mesoscale by simply adjusting the ratio of charged micelles to protons in the solution. This approach can be extended to the preparation of different ordered crystal structures with a precision hard to achieve via other approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA