Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(17): 3941-3950, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067358

RESUMO

Gallium (Ga) is a low melting point metal in the liquid state in the biological environment which presents a unique combination of fluidity, softness, and metallic electrical and thermal properties. In this work, liquid Ga is proposed as a biocompatible electrode material for cell culture by electro-stimulation since the cytotoxicity of Ga is generally considered low and some Ga compounds have been reported to exhibit anti-bacterial and anti-inflammatory activities. Complementarily, polydopamine (PDA) was coated on liquid Ga to increase the attachment capability of cells on the liquid Ga electrode and provide enhanced biocompatibility. The liquid Ga layer could be readily painted at room temperature on a solid inert substrate, followed by the formation of a nanoscale PDA coating layer resulting in a conformable and biocompatible composite electrode. The PDA layer was shown to coordinate with Ga3+, which is sourced from liquid Ga, providing electrical conductivity in the cell culture medium. The PDA-Ga3+ composite acted as a conductive substrate for advanced electro-stimulation for cell culture methods of representative animal fibroblasts. The cell proliferation was observed to increase by ∼143% as compared to a standard glass coverslip at a low potential of 0.1 V of direct coupling stimulation. This novel PDA-Ga3+ composite has potential applications in cell culture and regenerative medicine.


Assuntos
Gálio , Polímeros , Animais , Polímeros/farmacologia , Polímeros/química , Materiais Biocompatíveis/farmacologia , Gálio/farmacologia , Técnicas de Cultura de Células
2.
Small Methods ; 7(4): e2201198, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36856170

RESUMO

The lack of understanding for precise synthesis and assembly of nano-entities remains a major challenge for nanofabrication. Electrocrystallization of a charge-transfer complex (CTC), tetrathiafulvalene bromide (TTF)Br, is studied on micro/nanoelectrodes for precision deposition of functional materials. The study reveals new insights into the entire CTC electrocrystallization process from the initial nanocluster nucleation to the final elongated crystals with hollow ends grown from the working electrode to the neighboring receiving electrode. On microelectrodes, the number of nucleation sites is reduced to one by lowering the applied overpotential or precursor concentration. Certain current-time transients exhibit significant induction periods prior to stable nucleus growth. The induction regime contains small fluctuating current spikes consistent with stochastic formation of precritical nanoclusters with lifetimes of 0.1-30 s and sizes of 20-160 nm. Electrochemical analyses further reveal rate, size distribution, and formation/dissipation dynamics of the nanoclusters. Crystal growth of (TTF)Br is further studied on triangular nanoelectrode patterns with thickness of 5-500 nm, which shows a mass-transfer-controlled process applicable for precision deposition of functional (TTF)Br crystals. This study, for the first time, establishes CTC nanoelectrochemistry as a platform technology for precise deposition of conductive crystal assemblies spanning the source and drain electrode for sensing applications.

3.
Science ; 378(6624): 1118-1124, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36480610

RESUMO

In nature, snowflake ice crystals arrange themselves into diverse symmetrical six-sided structures. We show an analogy of this when zinc (Zn) dissolves and crystallizes in liquid gallium (Ga). The low-melting-temperature Ga is used as a "metallic solvent" to synthesize a range of flake-like Zn crystals. We extract these metallic crystals from the liquid metal solvent by reducing its surface tension using a combination of electrocapillary modulation and vacuum filtration. The liquid metal-grown crystals feature high morphological diversity and persistent symmetry. The concept is expanded to other single and binary metal solutes and Ga-based solvents, with the growth mechanisms elucidated through ab initio simulation of interfacial stability. This strategy offers general routes for creating highly crystalline, shape-controlled metallic or multimetallic fine structures from liquid metal solvents.

4.
ACS Appl Mater Interfaces ; 14(45): 51519-51530, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36322105

RESUMO

Liquid metals can be surface activated to generate a controlled galvanic potential by immersing them in aqueous solutions. This creates energized liquid-liquid interfaces that can promote interfacial chemical reactions. Here we utilize this interfacial phenomenon of liquid metals to deposit thin films of tin-doped tellurium onto rigid and flexible substrates. This is accomplished by exposing liquid metals to a precursor solution of Sn2+ and HTeO2+ ions. The ability to paint liquid metals onto substrates enables us to fabricate supercapacitor electrodes of liquid metal films with an intimately connected surface layer of tin-doped tellurium. The tin-doped tellurium exhibits a pseudocapacitive behavior in 1.0 M Na2SO4 electrolyte and records a specific capacitance of 184.06 F·g-1 (5.74 mF·cm-2) at a scan rate of 10 mV·s-1. Flexible supercapacitor electrodes are also fabricated by painting liquid metals onto polypropylene sheets and subsequently depositing tin-doped tellurium thin films. These flexible electrodes show outstanding mechanical stability even when experiencing a complete 180° bend as well as exhibit high power and energy densities of 160 W·cm-3 and 31 mWh·cm-3, respectively. Overall, this study demonstrates the attractive features of liquid metals in creating energy storage devices and exemplifies their use as media for synthesizing electrochemically active materials.

5.
Nat Chem ; 14(8): 935-941, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35668212

RESUMO

Insights into metal-matrix interactions in atomically dispersed catalytic systems are necessary to exploit the true catalytic activity of isolated metal atoms. Distinct from catalytic atoms spatially separated but immobile in a solid matrix, here we demonstrate that a trace amount of platinum naturally dissolved in liquid gallium can drive a range of catalytic reactions with enhanced kinetics at low temperature (318 to 343 K). Molecular simulations provide evidence that the platinum atoms remain in a liquid state in the gallium matrix without atomic segregation and activate the surrounding gallium atoms for catalysis. When used for electrochemical methanol oxidation, the surface platinum atoms in the gallium-platinum system exhibit an activity of [Formula: see text] three orders of magnitude higher than existing solid platinum catalysts. Such a liquid catalyst system, with a dynamic interface, sets a foundation for future exploration of high-throughput catalysis.

6.
Adv Mater ; 34(1): e2105789, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34613649

RESUMO

A green carbon capture and conversion technology offering scalability and economic viability for mitigating CO2 emissions is reported. The technology uses suspensions of gallium liquid metal to reduce CO2 into carbonaceous solid products and O2 at near room temperature. The nonpolar nature of the liquid gallium interface allows the solid products to instantaneously exfoliate, hence keeping active sites accessible. The solid co-contributor of silver-gallium rods ensures a cyclic sustainable process. The overall process relies on mechanical energy as the input, which drives nano-dimensional triboelectrochemical reactions. When a gallium/silver fluoride mix at 7:1 mass ratio is employed to create the reaction material, 92% efficiency is obtained at a remarkably low input energy of 230 kWh (excluding the energy used for dissolving CO2 ) for the capture and conversion of a tonne of CO2 . This green technology presents an economical solution for CO2 emissions.

7.
ACS Nano ; 15(12): 19661-19671, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34783540

RESUMO

Liquid metals (LMs) are electronic liquid with enigmatic interfacial chemistry and physics. These features make them promising materials for driving chemical reactions on their surfaces for designing nanoarchitectonic systems. Herein, we showed the interfacial interaction between eutectic gallium-indium (EGaIn) liquid metal and graphene oxide (GO) for the reduction of both substrate-based and free-standing GO. NanoIR surface mapping indicated the successful removal of carbonyl groups. Based on the gained knowledge, a composite consisting of assembled reduced GO sheets on LM microdroplets (LM-rGO) was developed. The LM enforced Ga3+ coordination within the rGO assembly found to modify the electrochemical interface for selective dopamine sensing by separating the peaks of interfering biologicals. Subsequently, paper-based electrodes were developed and modified with the LM-rGO that presented the compatibility of the assembly with low-cost commercial technologies. The observed interfacial interaction, imparted by LM's interfaces, and electrochemical performance observed for LM-rGO will lead to effective functional materials and electrode modifiers.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Eletroquímicas , Oxirredução
8.
ACS Appl Mater Interfaces ; 13(44): 53181-53193, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723471

RESUMO

Molybdenum dioxide (MoO2), considering its near-metallic conductivity and surface plasmonic properties, is a great material for electronics, energy storage devices and biosensing. Yet to this day, room-temperature synthesis of large area MoO2, which allows deposition on arbitrary substrates, has remained a challenge. Due to their reactive interfaces and specific solubility conditions, gallium-based liquid metal alloys offer unique opportunities for synthesizing materials that can meet these challenges. Herein, a substrate-independent liquid metal-based method for the room temperature deposition and patterning of MoO2 is presented. By introducing a molybdate precursor to the surrounding of a eutectic gallium-indium alloy droplet, a uniform layer of hydrated molybdenum oxide (H2MoO3) is formed at the interface. This layer is then exfoliated and transferred onto a desired substrate. Utilizing the transferred H2MoO3 layer, a laser-writing technique is developed which selectively transforms this H2MoO3 into crystalline MoO2 and produces electrically conductive MoO2 patterns at room temperature. The electrical conductivity and plasmonic properties of the MoO2 are analyzed and demonstrated. The presented metal oxide room-temperature deposition and patterning method can find many applications in optoelectronics, sensing, and energy industries.

9.
ACS Nano ; 15(10): 16839-16850, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34613693

RESUMO

Low melting point eutectic systems, such as the eutectic gallium-indium (EGaIn) alloy, offer great potential in the domain of nanometallurgy; however, many of their interfacial behaviors remain to be explored. Here, a compositional change of EGaIn nanoalloys triggered by polydopamine (PDA) coating is demonstrated. Incorporating PDA on the surface of EGaIn nanoalloys renders core-shell nanostructures that accompany Ga-In phase separation within the nanoalloys. The PDA shell keeps depleting the Ga3+ from the EGaIn nanoalloys when the synthesis proceeds, leading to a Ga3+-coordinated PDA coating and a smaller nanoalloy. During this process, the eutectic nanoalloys turn into non-eutectic systems that ultimately result in the solidification of In when Ga is fully depleted. The reaction of Ga3+-coordinated PDA-coated nanoalloys with nitrogen dioxide gas is presented as an example for demonstrating the functionality of such hybrid composites. The concept of phase-separating systems, with polymeric reservoirs, may lead to tailored materials and can be explored on a variety of post-transition metals.

10.
Adv Mater ; 33(43): e2104793, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510605

RESUMO

The introduction of trace impurities within the doping processes of semiconductors is still a technological challenge for the electronics industries. By taking advantage of the selective enrichment of liquid metal interfaces, and harvesting the doped metal oxide semiconductor layers, the complexity of the process can be mitigated and a high degree of control over the outcomes can be achieved. Here, a mechanism of natural filtering for the preparation of doped 2D semiconducting sheets based on the different migration tendencies of metallic elements in the bulk competing for enriching the interfaces is proposed. As a model, liquid metal alloys with different weight ratios of Sn and Bi in the bulk are employed for harvesting Bi2 O3 -doped SnO nanosheets. In this model, Sn shows a much stronger tendency than Bi to occupy surface sites of the Bi-Sn alloys, even at the very high concentrations of Bi in the bulk. This provides the opportunity for creating SnO 2D sheets with tightly controlled Bi2 O3 dopants. By way of example, it is demonstrated how such nanosheets could be made selective to both reducing and oxidizing environmental gases. The process demonstrated here offers significant opportunities for future synthesis and fabrication processes in the electronics industries.

11.
ACS Appl Mater Interfaces ; 13(36): 43247-43257, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34459601

RESUMO

Liquid metals and alloys with high-aspect-ratio nanodimensional features are highly sought-after for emerging electronic applications. However, high surface tension, water-like fluidity, and the existence of self-limiting oxides confer specific peculiarities to their characteristics. Here, we introduce a high accuracy nanometric three-dimensional pulling and stretching method to fabricate liquid-metal-based nanotips from room- or near-room-temperature gallium-based alloys. The pulling rate and step size were controlled with a resolution of up to 10 nm and yielded different nanotip morphologies and lengths as a function of the base liquid metal alloy composition and the pulling parameters. The obtained nanotips presented high aspect ratios over lengths of a few microns and apexes between 10 and 100 nm. The liquid metal alloys were found confined within nanotips with about 10 nm apexes when vertically pulled at 100 nm/s. An amorphous gallium oxide skin was shown to cover the surface of the nanotips, while the liquid core was composed of the initial liquid metal alloys. The electrical contact established at the nanotips was characterized under dynamic conditions. The liquid metal nanotips showed an Ohmic resistance when a continuous liquid metal channel was formed, and a controllable semiconductor state corresponding to a heterojunction formed at the junction between the liquid metal phase and the gallium oxide semiconductor skin. The variable threshold voltages of the heterojunction were controlled via stretching of the nanotips with a 10 nm step resolution. The liquid metal nanotips were also used for establishing soft electronic junctions. This novel method of liquid metal nanotip fabrication with Ohmic and semiconducting behaviors will lead to exciting avenues for developing electronic and sensing devices.

12.
ACS Appl Mater Interfaces ; 13(24): 28627-28638, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110785

RESUMO

The emergence of three-dimensional (3D) printing promises a disruption in the design and on-demand fabrication of smart structures in applications ranging from functional devices to human organs. However, the scale at which 3D printing excels is within macro- and microlevels and principally lacks the spatial ordering of building blocks at nanolevels, which is vital for most multifunctional devices. Herein, we employ liquid crystal (LC) inks to bridge the gap between the nano- and microscales in a single-step 3D printing. The LC ink is prepared from mixtures of LCs of nanocellulose whiskers and large sheets of graphene oxide, which offers a highly ordered laminar organization not inherently present in the source materials. LC-mediated 3D printing imparts the fine-tuning required for the design freedom of architecturally layered systems at the nanoscale with intricate patterns within the 3D-printed constructs. This approach empowered the development of a high-performance humidity sensor composed of self-assembled lamellar organization of NC whiskers. We observed that the NC whiskers that are flat and parallel to each other in the laminar organization allow facile mass transport through the structure, demonstrating a significant improvement in the sensor performance. This work exemplifies how LC ink, implemented in a 3D printing process, can unlock the potential of individual constituents to allow macroscopic printing architectures with nanoscopic arrangements.

13.
ACS Nano ; 15(5): 9134-9142, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33929186

RESUMO

Phonon-polaritons (PhPs) arise from the strong coupling of photons to optical phonons. They offer light confinement and harnessing below the diffraction limit for applications including sensing, imaging, superlensing, and photonics-based communications. However, structures consisting of both suspended and supported hyperbolic materials on periodic dielectric substrates are yet to be explored. Here we investigate phonon-polaritonic crystals (PPCs) that incorporate hyperbolic hexagonal boron nitride (hBN) to a silicon-based photonic crystal. By using the near-field excitation in scattering-type scanning near-field optical microscopy (s-SNOM), we resolved two types of repetitive local field distribution patterns resembling the Archimedean-like tiling on hBN-based PPCs, i.e., dipolar-like field distributions and highly dispersive PhP interference patterns. We demonstrate the tunability of PPC band structures by varying the thickness of hyperbolic materials, supported by numerical simulations. Lastly, we conducted scattering-type nanoIR spectroscopy to confirm the interaction of hBN with photonic crystals. The introduced PPCs will provide the base for fabricating essential subdiffraction components of advanced optical systems in the mid-IR range.

14.
Nat Nanotechnol ; 16(4): 431-439, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33462429

RESUMO

It is well-understood that during the liquid-to-solid phase transition of alloys, elements segregate in the bulk phase with the formation of microstructures. In contrast, we show here that in a Bi-Ga alloy system, highly ordered nanopatterns emerge preferentially at the alloy surfaces during solidification. We observed a variety of transition, hybrid and crystal-defect-like patterns, in addition to lamellar and rod-like structures. Combining experiments and molecular dynamics simulations, we investigated the influence of the superficial Bi and Ga2O3 layers during surface solidification and elucidated the pattern-formation mechanisms, which involve surface-catalysed heterogeneous nucleation. We further demonstrated the dynamic nature and robustness of the phenomenon under different solidification conditions and for various alloy systems. The surface patterns we observed enable high-spatial-resolution nanoscale-infrared and surface-enhanced Raman mapping, which reveal promising potential for surface- and nanoscale-based applications.

15.
ACS Nano ; 14(10): 14070-14079, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32916049

RESUMO

Although it remains unexplored, the direct synthesis and expulsion of metals from alloys can offer many opportunities. Here, such a phenomenon is realized electrochemically by applying a polarizing voltage signal to liquid alloys. The signal induces an abrupt interfacial perturbation at the Ga-based liquid alloy surface and results in an unrestrained discharge of minority elements, such as Sn, In, and Zn, from the liquid alloy. We show that this can occur by either changing the surface tension or inducing a reversible redox reaction at the alloys' interface. The expelled metals exhibit nanosized and porous morphologies, and depending on the cell electrochemistry, these metals can be passivated with oxide layers or fully oxidized into distinct nanostructures. The proposed concept of metal expulsion from liquid alloys can be extended to a wide variety of molten metals for producing metallic and metallic compound nanostructures for advanced applications.

16.
J Environ Manage ; 271: 110970, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778274

RESUMO

The concentrative isolation of metal traces from aqueous solutions is of vital importance for environmental and industrial processes. Developing reliable systems of nanoscale that can be fine-tuned to effectively isolate these metals remains an intriguing aim which can potentially beget economic benefits and mitigate major environmental concerns. Here we demonstrate a conceptual metal extraction system where magnetic multi-wall carbon nanotubes (M-MWCNTs) are surface-equipped with a molecular network of polyethylenimine (PEI) to serve as a reusable nano-ionic exchanger, referred to as "M-MWCNTs-PEI". The designed nano-ionic exchanger forms readily stable suspensions with the metal-bearing aqueous solutions eliminating the need for vigorous agitation. Besides, it can be magnetically manipulated and separated in/from the solution. To exemplify its potential for the isolation of metal traces, the M-MWCNTs-PEI was tested with the uranium trace ions in aqueous media. The M-MWCNTs-PEI featured distinct sorption capacity of ~488 mg/g at pH 6, with moderate, but stable, binding affinity toward uranium ions. As such, excellent isolation performance is demonstrated while bound uranium ions are effectively concentrated and recovered from the interfacial PEI molecular network. This was efficiently achieved by exposing the loaded M-MWCNTs-PEI to solutions of small volumes and specific chemistry. Such combined qualities of large capacity and reusability have not been observed with the previously reported ion exchange systems. Altogether, our observations here demonstrate how functional systems of nanoscale can be adapted for industrial applications while this concept can be extended to address other important resources such as rare-earth and lanthanide elements.


Assuntos
Nanotubos de Carbono , Urânio , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Soluções , Suspensões
17.
Adv Mater ; 32(29): e2001997, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510699

RESUMO

Room-temperature synthesis of 2D graphitic materials (2D-GMs) remains an elusive aim, especially with electrochemical means. Here, it is shown that liquid metals render this possible as they offer catalytic activity and an ultrasmooth templating interface that promotes Frank-van der Merwe regime growth, while allowing facile exfoliation due to the absence of interfacial forces as a nonpolar liquid. The 2D-GMs are formed at low onset potential and can be in situ doped depending on the choice of organic precursors and the electrochemical set-up. The materials are tuned to exhibit porous or pinhole-free morphologies and are engineered for their degree of oxidation and number of layers. The proposed liquid-metal-based room-temperature electrochemical route can be expanded to many other 2D materials.

18.
Nano Lett ; 20(6): 4403-4409, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32369376

RESUMO

Metallic foams, with intrinsic catalytic properties, are critical for heterogeneous catalysis reactions and reactor designs. Market ready catalytic foams are costly and made of multimaterial coatings with large sub-millimeter open cells providing insufficient active surface area. Here we use the principle of nanometallurgy within liquid metals to prepare nanostructured catalytic metal foams using a low-cost alloy of bismuth and tin with sub-micrometer open cells. The eutectic bismuth and tin liquid metal alloy was processed into nanoparticles and blown into a tin and bismuth nanophase separated heterostructure in aqueous media at room temperature and using an indium brazing agent. The CO2 electroconversion efficiency of the catalytic foam is presented with an impressive 82% conversion efficiency toward formates at high current density of -25 mA cm-2 (-1.2 V vs RHE). Nanometallurgical process applied to liquid metals will lead to exciting possibilities for expanding industrial and research accessibility of catalytic foams.

19.
ACS Appl Mater Interfaces ; 12(17): 20119-20128, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32264673

RESUMO

Liquid metals are fast becoming a new class of universal and frictionless additives for the development of multifunctional soft and flexible materials. Herein, nanodroplets of eutectic gallium-indium alloy, which is liquid at room temperature, were used as a platform for the formulation of electrically conductive and magnetically responsive gels with the incorporation of Fe3O4 nanoparticles. The nanoadditives were prepared in situ within a water-based solution of polyvinyl alcohol. A borax cross-linking reaction was then performed to yield multifunctional flexible and self-healing gels. The physicochemical properties and changes in the nanoadditives at each step of the gel preparation method were characterized. Oxidation and complexation reactions between the liquid metal and iron oxide nanoadditives were observed. A mixture of nanosized functional magnetic Fe3O4/Fe2O3 and In-Fe oxide complexes was found to enable the magnetic susceptibility of the gels. The mechanical and self-healing properties of the gels were assessed, and finally, this flexible and multifunctional material was used as an electronic switch via remote magnetic actuation. The developed conductive and magnetic gels demonstrate great potential for the design of soft electronic systems.

20.
Small ; 16(12): e1903753, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31565857

RESUMO

Colloidal liquid metal alloys of gallium, with melting points below room temperature, are potential candidates for creating electrically conductive and flexible composites. However, inclusion of liquid metal micro- and nanodroplets into soft polymeric matrices requires a harsh auxiliary mechanical pressing to rupture the droplets to establish continuous pathways for high electrical conductivity. However, such a destructive strategy reduces the integrity of the composites. Here, this problem is solved by incorporating small loading of nonfunctionalized graphene flakes into the composites. The flakes introduce cavities that are filled with liquid metal after only relatively mild press-rolling (<0.1 MPa) to form electrically conductive continuous pathways within the polymeric matrix, while maintaining the integrity and flexibility of the composites. The composites are characterized to show that even very low graphene loadings (≈0.6 wt%) can achieve high electrical conductivity. The electrical conductance remains nearly constant, with changes less than 0.5%, even under a relatively high applied pressure of >30 kPa. The composites are used for forming flexible electrically-conductive tracks in electronic circuits with a self-healing property. The demonstrated application of co-fillers, together with liquid metal droplets, can be used for establishing electrically-conductive printable-composite tracks for future large-area flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA