Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
PLoS Genet ; 20(4): e1011231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578806

RESUMO

Integrons are adaptive devices that capture, stockpile, shuffle and express gene cassettes thereby sampling combinatorial phenotypic diversity. Some integrons called sedentary chromosomal integrons (SCIs) can be massive structures containing hundreds of cassettes. Since most of these cassettes are non-expressed, it is not clear how they remain stable over long evolutionary timescales. Recently, it was found that the experimental inversion of the SCI of Vibrio cholerae led to a dramatic increase of the cassette excision rate associated with a fitness defect. Here, we question the evolutionary sustainability of this apparently counter selected genetic context. Through experimental evolution, we find that the integrase is rapidly inactivated and that the inverted SCI can recover its original orientation by homologous recombination between two insertion sequences (ISs) present in the array. These two outcomes of SCI inversion restore the normal growth and prevent the loss of cassettes, enabling SCIs to retain their roles as reservoirs of functions. These results illustrate a nice interplay between gene orientation, genome rearrangement, bacterial fitness and demonstrate how integrons can benefit from their embedded ISs.


Assuntos
Bactérias , Integrons , Integrons/genética , Bactérias/genética , Elementos de DNA Transponíveis , Integrases/genética
2.
Nat Microbiol ; 9(1): 228-240, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172619

RESUMO

Integrons are genetic elements involved in bacterial adaptation which capture, shuffle and express genes encoding adaptive functions embedded in cassettes. These events are governed by the integron integrase through site-specific recombination between attC and attI integron sites. Using computational and molecular genetic approaches, here we demonstrate that the integrase also catalyses cassette integration into bacterial genomes outside of its known att sites. Once integrated, these cassettes can be expressed if located near bacterial promoters and can be excised at the integration point or outside, inducing chromosomal modifications in the latter case. Analysis of more than 5 × 105 independent integration events revealed a very large genomic integration landscape. We identified consensus recombination sequences, named attG sites, which differ greatly in sequence and structure from classical att sites. These results unveil an alternative route for dissemination of adaptive functions in bacteria and expand the role of integrons in bacterial evolution.


Assuntos
Genoma Bacteriano , Integrons , Integrons/genética , Bactérias/genética , Bactérias/metabolismo , Integrases/genética , Integrases/metabolismo , Genômica
3.
Sci Adv ; 10(2): eadj3498, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215203

RESUMO

Integrons are adaptive bacterial devices that rearrange promoter-less gene cassettes into variable ordered arrays under stress conditions, thereby sampling combinatorial phenotypic diversity. Chromosomal integrons often carry hundreds of silent gene cassettes, with integrase-mediated recombination leading to rampant DNA excision and integration, posing a potential threat to genome integrity. How this activity is regulated and controlled, particularly through selective pressures, to maintain such large cassette arrays is unknown. Here, we show a key role of promoter-containing toxin-antitoxin (TA) cassettes as systems that kill the cell when the overall cassette excision rate is too high. These results highlight the importance of TA cassettes regulating the cassette recombination dynamics and provide insight into the evolution and success of integrons in bacterial genomes.


Assuntos
Integrons , Sistemas Toxina-Antitoxina , Integrons/genética , Sistemas Toxina-Antitoxina/genética , Bactérias/genética , Genoma Bacteriano , Recombinação Genética
4.
Microbiol Mol Biol Rev ; 87(4): e0003622, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38047635

RESUMO

SUMMARYAminoglycosides (AGs) are long-known molecules successfully used against Gram-negative pathogens. While their use declined with the discovery of new antibiotics, they are now classified as critically important molecules because of their effectiveness against multidrug-resistant bacteria. While they can efficiently cross the Gram-negative envelope, the mechanism of AG entry is still incompletely understood, although this comprehension is essential for the development of new therapies in the face of the alarming increase in antibiotic resistance. Increasing antibiotic uptake in bacteria is one strategy to enhance effective treatments. This review aims, first, to consolidate old and recent knowledge about AG uptake; second, to explore the connection between AG-dependent bacterial stress and drug uptake; and finally, to present new strategies of potentiation of AG uptake for more efficient antibiotic therapies. In particular, we emphasize on the connection between sugar transport and AG potentiation.


Assuntos
Aminoglicosídeos , Antibacterianos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Bactérias , Farmacorresistência Bacteriana Múltipla
5.
Microbiol Spectr ; 11(6): e0173023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37861314

RESUMO

IMPORTANCE: The RavA-ViaA complex was previously found to sensitize Escherichia coli to aminoglycosides (AGs) in anaerobic conditions, but the mechanism is unknown. AGs are antibiotics known for their high efficiency against Gram-negative bacteria. In order to elucidate how the expression of the ravA-viaA genes increases bacterial susceptibility to aminoglycosides, we aimed at identifying partner functions necessary for increased tolerance in the absence of RavA-ViaA, in Vibrio cholerae. We show that membrane stress response systems Cpx and Zra2 are required in the absence of RavA-ViaA, for the tolerance to AGs and for outer membrane integrity. In the absence of these systems, the ∆ravvia strain's membrane becomes permeable to external agents such as the antibiotic vancomycin.


Assuntos
Proteínas de Escherichia coli , Vibrio cholerae , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Aminoglicosídeos/farmacologia , Aminoglicosídeos/metabolismo , Adenosina Trifosfatases/metabolismo
6.
Mol Microbiol ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658686

RESUMO

In recent decades, there has been a rapid increase in the prevalence of multidrug-resistant pathogens, posing a challenge to modern antibiotic-based medicine. This has highlighted the need for novel treatments that can specifically affect the target microorganism without disturbing other co-inhabiting species, thus preventing the development of dysbiosis in treated patients. Moreover, there is a pressing demand for tools to effectively manipulate complex microbial populations. One of the approaches suggested to address both issues was to use conjugation as a tool to modify the microbiome by either editing the genome of specific bacterial species and/or the removal of certain taxonomic groups. Conjugation involves the transfer of DNA from one bacterium to another, which opens up the possibility of introducing, modifying or deleting specific genes in the recipient. In response to this proposal, there has been a significant increase in the number of studies using this method for gene delivery in bacterial populations. This MicroReview aims to provide a detailed overview on the use of conjugation for microbiome engineering, and at the same time, to initiate a discussion on the potential, limitations and possible future directions of this approach.

7.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502966

RESUMO

The possible active entry of aminoglycosides in bacterial cells has been debated since the development of this antibiotic family. Here we report the identification of their active transport mechanism in Vibrio species. We combined genome-wide transcriptional analysis and fitness screens to identify alterations driven by treatment of V. cholerae with sub-minimum inhibitory concentrations (sub-MIC) of the aminoglycoside tobramycin. RNA-seq data showed downregulation of the small non-coding RNA ncRNA586 during such treatment, while Tn-seq revealed that inactivation of this sRNA was associated with improved fitness in the presence of tobramycin. This sRNA is located near sugar transport genes and previous work on a homologous region in Vibrio tasmaniensis suggested that this sRNA stabilizes gene transcripts for carbohydrate transport and utilization, as well as phage receptors. The role for ncRNA586, hereafter named ctrR, in the transport of both carbohydrates and aminoglycosides, was further investigated. Flow cytometry on cells treated with a fluorescent aminoglycoside confirmed the role of ctrR and of carbohydrate transporters in differential aminoglycoside entry. Despite sequence diversity, ctrR showed functional conservation across the Vibrionales. This system in directly modulated by carbon sources, suggesting regulation by carbon catabolite repression, a widely conserved mechanism in Gram-negative bacteria, priming future research on aminoglycoside uptake by sugar transporters in other bacterial species.

8.
mBio ; 14(3): e0315822, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37097157

RESUMO

Plasmids facilitate the vertical and horizontal spread of antimicrobial resistance genes between bacteria. The host range and adaptation of plasmids to new hosts determine their impact on the spread of resistance. In this work, we explore the mechanisms driving plasmid adaptation to novel hosts in experimental evolution. Using the small multicopy plasmid pB1000, usually found in Pasteurellaceae, we studied its adaptation to a host from a different bacterial family, Escherichia coli. We observed two different mechanisms of adaptation. One mechanism is single nucleotide polymorphisms (SNPs) in the origin of replication (oriV) of the plasmid, which increase the copy number in E. coli cells, elevating the stability, and resistance profile. The second mechanism consists of two insertion sequences (ISs), IS1 and IS10, which decrease the fitness cost of the plasmid by disrupting an uncharacterized gene on pB1000 that is harmful to E. coli. Both mechanisms increase the stability of pB1000 independently, but only their combination allows long-term maintenance. Crucially, we show that the mechanisms have a different impact on the host range of the plasmid. SNPs in oriV prevent the replication in the original host, resulting in a shift of the host range. In contrast, the introduction of ISs either shifts or expands the host range, depending on the IS. While IS1 leads to expansion, IS10 cannot be reintroduced into the original host. This study gives new insights into the relevance of ISs in plasmid-host adaptation to understand the success in spreading resistance. IMPORTANCE ColE1-like plasmids are small, mobilizable plasmids that can be found across at least four orders of Gammaproteobacteria and are strongly associated with antimicrobial resistance genes. Plasmid pB1000 carries the gene blaROB-1, conferring high-level resistance to penicillins and cefaclor. pB1000 has been described in various species of the family Pasteurellaceae, for example, in Haemophilus influenzae, which can cause diseases such as otitis media, meningitis, and pneumonia. To understand the resistance spread through horizontal transfer, it is essential to study the mechanisms of plasmid adaptation to novel hosts. In this work we identify that a gene from pB1000, which encodes a peptide that is toxic for E. coli, and the low plasmid copy number (PCN) of pB1000 in E. coli cells are essential targets in the described plasmid-host adaptation and therefore limit the spread of pB1000-encoded blaROB-1. Furthermore, we show how the interplay of two adaptation mechanisms leads to successful plasmid maintenance in a different bacterial family.


Assuntos
Elementos de DNA Transponíveis , Escherichia coli , Escherichia coli/genética , Plasmídeos/genética , Bactérias/genética , Cefaclor , Antibacterianos
9.
mBio ; 14(2): e0343222, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36861972

RESUMO

It is unclear how gene order within the chromosome influences genome evolution. Bacteria cluster transcription and translation genes close to the replication origin (oriC). In Vibrio cholerae, relocation of s10-spc-α locus (S10), the major locus of ribosomal protein genes, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction in growth rate, fitness, and infectivity. To test the long-term impact of this trait, we evolved 12 populations of V. cholerae strains bearing S10 at an oriC-proximal or an oriC-distal location for 1,000 generations. During the first 250 generations, positive selection was the main force driving mutation. After 1,000 generations, we observed more nonadaptative mutations and hypermutator genotypes. Populations fixed inactivating mutations at many genes linked to virulence: flagellum, chemotaxis, biofilm, and quorum sensing. Throughout the experiment, all populations increased their growth rates. However, those bearing S10 close to oriC remained the fittest, indicating that suppressor mutations cannot compensate for the genomic position of the main ribosomal protein locus. Selection and sequencing of the fastest-growing clones allowed us to characterize mutations inactivating, among other sites, flagellum master regulators. Reintroduction of these mutations into the wild-type context led to a ≈10% growth improvement. In conclusion, the genomic location of ribosomal protein genes conditions the evolutionary trajectory of V. cholerae. While genomic content is highly plastic in prokaryotes, gene order is an underestimated factor that conditions cellular physiology and evolution. A lack of suppression enables artificial gene relocation as a tool for genetic circuit reprogramming. IMPORTANCE The bacterial chromosome harbors several entangled processes such as replication, transcription, DNA repair, and segregation. Replication begins bidirectionally at the replication origin (oriC) until the terminal region (ter) organizing the genome along the ori-ter axis gene order along this axis could link genome structure to cell physiology. Fast-growing bacteria cluster translation genes near oriC. In Vibrio cholerae, moving them away was feasible but at the cost of losing fitness and infectivity. Here, we evolved strains harboring ribosomal genes close or far from oriC. Growth rate differences persisted after 1,000 generations. No mutation was able to compensate for the growth defect, showing that ribosomal gene location conditions their evolutionary trajectory. Despite the high plasticity of bacterial genomes, evolution has sculpted gene order to optimize the ecological strategy of the microorganism. We observed growth rate improvement throughout the evolution experiment that occurred at expense of energetically costly processes such the flagellum biosynthesis and virulence-related functions. From the biotechnological point of view, manipulation of gene order enables altering bacterial growth with no escape events.


Assuntos
Vibrio cholerae , Vibrio cholerae/genética , Proteínas Ribossômicas/genética , Genoma Bacteriano , Mutação , Cromossomos , Proteínas de Bactérias/genética
10.
Res Microbiol ; 174(3): 104025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587858

RESUMO

Candida albicans is a major fungal pathogen of humans. Although its genome has been sequenced more than two decades ago, there are still over 4300 uncharacterized C. albicans genes. We previously generated an ORFeome as well as a collection of destination vectors to facilitate overexpression of C. albicans ORFs. Here, we report the construction of ∼2500 overexpression mutants and their evaluation by in vitro spotting on rich medium and in a liquid pool experiment in rich medium, allowing the identification of genes whose overexpression has a fitness cost. The candidates were further validated at the individual strain level. This new resource allows large-scale screens in different growth conditions to be performed routinely. Altogether, based on the concept of identifying functionally related genes by cluster analysis, the availability of this overexpression mutant collection will facilitate the characterization of gene functions in C. albicans.


Assuntos
Candida albicans , Genoma Fúngico , Candida albicans/genética , Proteínas Fúngicas/genética
11.
ACS Synth Biol ; 12(2): 618-623, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36706324

RESUMO

Inteins are proteins embedded into host proteins from which they are excised in an autocatalytic reaction. Specifically, split inteins are separated into two independent fragments that reconstitute the host protein during the catalytic process. We recently developed a novel strategy for the specific killing of pathogenic and antibiotic resistant bacteria based on toxin-intein combinations. Bacterial type II toxin-antitoxin systems are protein modules in which the toxin can provoke cell death whereas the antitoxin inhibits toxin activity. Although our previous system was based on a split intein (iDnaE) and the CcdB toxin, we demonstrated that iDnaE is able to reconstitute four different toxins. To expand the applicability of our system by widening the repertoire of toxin-intein combinations for complex set-ups, we introduced a second intein, iDnaX, which was artificially split. We demonstrate that iDnaX is able to reconstitute the four toxins, and we manage to reduce its scar size to facilitate their use. In addition, we prove the orthogonality of both inteins (iDnaE and iDnaX) through a toxin reconstitution assay, thus opening the possibility for complex set-ups based on these toxin-intein modules. This could be used to develop specific antimicrobial and other biotechnological applications.


Assuntos
Inteínas , Processamento de Proteína , Inteínas/genética , Proteínas
12.
Res Microbiol ; 174(1-2): 103997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36347445

RESUMO

Vibrio cholerae N16961 genome encodes 18 type II Toxin/Antitoxin (TA) systems, all but one located inside gene cassettes of its chromosomal superintegron (SI). This study aims to investigate additional TA systems in this genome. We screened for all two-genes operons of uncharacterized function by analyzing previous RNAseq data. Assays on nine candidates, revealed one additional functional type II TA encoded by the VCA0497-0498 operon, carried inside a SI cassette. We showed that VCA0498 antitoxin alone and in complex with VCA0497 represses its own operon promoter. VCA0497-0498 is the second element of the recently identified dhiT/dhiA superfamily uncharacterized type II TA system. RNAseq analysis revealed that another SI cassette encodes a novel type I TA system: VCA0495 gene and its two associated antisense non-coding RNAs, ncRNA495 and ncRNA496. Silencing of both antisense ncRNAs lead to cell death, demonstrating the type I TA function. Both VCA0497 and VCA0495 toxins do not show any homology to functionally characterized toxins, however our preliminary data suggest that their activity may end up in mRNA degradation, directly or indirectly. Our findings increase the TA systems number carried in this SI to 19, preferentially located in its distal end, confirming their importance in this large cassette array.


Assuntos
Antitoxinas , Toxinas Bacterianas , Vibrio cholerae , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Escherichia coli/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Regiões Promotoras Genéticas
13.
EcoSal Plus ; 11(1): eesp00082022, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277776

RESUMO

To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.


Assuntos
Replicação do DNA , Vibrio cholerae , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Ciclo Celular/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Bactérias/genética
14.
mBio ; 13(3): e0086222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475644

RESUMO

Strains of the freshwater cyanobacterium Synechococcus elongatus were first isolated approximately 60 years ago, and PCC 7942 is well established as a model for photosynthesis, circadian biology, and biotechnology research. The recent isolation of UTEX 3055 and subsequent discoveries in biofilm and phototaxis phenotypes suggest that lab strains of S. elongatus are highly domesticated. We performed a comprehensive genome comparison among the available genomes of S. elongatus and sequenced two additional laboratory strains to trace the loss of native phenotypes from the standard lab strains and determine the genetic basis of useful phenotypes. The genome comparison analysis provides a pangenome description of S. elongatus, as well as correction of extensive errors in the published sequence for the type strain PCC 6301. The comparison of gene sets and single nucleotide polymorphisms (SNPs) among strains clarifies strain isolation histories and, together with large-scale genome differences, supports a hypothesis of laboratory domestication. Prophage genes in laboratory strains, but not UTEX 3055, affect pigmentation, while unique genes in UTEX 3055 are necessary for phototaxis. The genomic differences identified in this study include previously reported SNPs that are, in reality, sequencing errors, as well as SNPs and genome differences that have phenotypic consequences. One SNP in the circadian response regulator rpaA that has caused confusion is clarified here as belonging to an aberrant clone of PCC 7942, used for the published genome sequence, that has confounded the interpretation of circadian fitness research. IMPORTANCE Synechococcus elongatus is a versatile and robust model cyanobacterium for photosynthetic metabolism and circadian biology research, with utility as a biological production platform. We compared the genomes of closely related S. elongatus strains to create a pangenome annotation to aid gene discovery for novel phenotypes. The comparative genomic analysis revealed the need for a new sequence of the species type strain PCC 6301 and includes two new sequences for S. elongatus strains PCC 6311 and PCC 7943. The genomic comparison revealed a pattern of early laboratory domestication of strains, clarifies the relationship between the strains PCC 6301 and UTEX 2973, and showed that differences in large prophage regions, operons, and even single nucleotides have effects on phenotypes as wide-ranging as pigmentation, phototaxis, and circadian gene expression.


Assuntos
Synechococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genômica , Fenótipo , Fotossíntese , Synechococcus/metabolismo
15.
16.
Cells ; 11(6)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326376

RESUMO

Integrons are powerful recombination systems found in bacteria, which act as platforms capable of capturing, stockpiling, excising and reordering mobile elements called cassettes. These dynamic genetic machineries confer a very high potential of adaptation to their host and have quickly found themselves at the forefront of antibiotic resistance, allowing for the quick emergence of multi-resistant phenotypes in a wide range of bacterial species. Part of the success of the integron is explained by its ability to integrate various environmental and biological signals in order to allow the host to respond to these optimally. In this review, we highlight the substantial interconnectivity that exists between integrons and their hosts and its importance to face changing environments. We list the factors influencing the expression of the cassettes, the expression of the integrase, and the various recombination reactions catalyzed by the integrase. The combination of all these host factors allows for a very tight regulation of the system at the cost of a limited ability to spread by horizontal gene transfer and function in remotely related hosts. Hence, we underline the important consequences these factors have on the evolution of integrons. Indeed, we propose that sedentary chromosomal integrons that were less connected or connected via more universal factors are those that have been more successful upon mobilization in mobile genetic structures, in contrast to those that were connected to species-specific host factors. Thus, the level of specificity of the involved host factors network may have been decisive for the transition from chromosomal integrons to the mobile integrons, which are now widespread. As such, integrons represent a perfect example of the conflicting relationship between the ability to control a biological system and its potential for transferability.


Assuntos
Transferência Genética Horizontal , Integrons , Bactérias/genética , Resistência Microbiana a Medicamentos , Integrases/genética , Integrons/genética
17.
Elife ; 112022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35037621

RESUMO

The plasmid-mediated quinolone resistance (PMQR) genes have been shown to promote high-level bacterial resistance to fluoroquinolone antibiotics, potentially leading to clinical treatment failures. In Escherichia coli, sub-minimum inhibitory concentrations (sub-MICs) of the widely used fluoroquinolones are known to induce the SOS response. Interestingly, the expression of several PMQR qnr genes is controlled by the SOS master regulator, LexA. During the characterization of a small qnrD-plasmid carried in E. coli, we observed that the aminoglycosides become able to induce the SOS response in this species, thus leading to the elevated transcription of qnrD. Our findings show that the induction of the SOS response is due to nitric oxide (NO) accumulation in the presence of sub-MIC of aminoglycosides. We demonstrated that the NO accumulation is driven by two plasmid genes, ORF3 and ORF4, whose products act at two levels. ORF3 encodes a putative flavin adenine dinucleotide (FAD)-binding oxidoreductase which helps NO synthesis, while ORF4 codes for a putative fumarate and nitrate reductase (FNR)-type transcription factor, related to an O2-responsive regulator of hmp expression, able to repress the Hmp-mediated NO detoxification pathway of E. coli. Thus, this discovery, that other major classes of antibiotics may induce the SOS response could have worthwhile implications for antibiotic stewardship efforts in preventing the emergence of resistance.


Assuntos
Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Plasmídeos/genética , Resposta SOS em Genética/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/fisiologia , Óxido Nítrico/metabolismo , Quinolonas
18.
Microlife ; 3: uqac019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223353

RESUMO

Antimicrobial resistance develops as a major problem in infectious diseases treatment. While antibiotic resistance mechanisms are usually studied using lethal antibiotic doses, lower doses allowing bacterial growth are now considered as factors influencing the development and selection of resistance. Starting with a high-density Tn insertion library in Vibrio cholerae and following its evolution by TN-seq in the presence of subinhibitory concentrations of antibiotics, we discovered that RNA modification genes can have opposite fates, being selected or counter-selected. We, thus have undertaken the phenotypic characterization of 23 transfer RNA (tRNA) and ribosomal RNA (rRNA) modifications deletion mutants, for which growth is globally not affected in the absence of stress. We uncover a specific involvement of different RNA modification genes in the response to aminoglycosides (tobramycin and gentamicin), fluoroquinolones (ciprofloxacin), ß-lactams (carbenicillin), chloramphenicol, and trimethoprim. Our results identify t/rRNA modification genes, not previously associated to any antibiotic resistance phenotype, as important factors affecting the bacterial response to low doses of antibiotics from different families. This suggests differential translation and codon decoding as critical factors involved in the bacterial response to stress.

19.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831448

RESUMO

Antibiotics are well known drugs which, when present above certain concentrations, are able to inhibit the growth of certain bacteria. However, a growing body of evidence shows that even when present at lower doses (subMIC, for sub-minimal inhibitory concentration), unable to inhibit or affect microbial growth, antibiotics work as signaling molecules, affect gene expression and trigger important bacterial stress responses. However, how subMIC antibiotic signaling interplays with other well-known signaling networks in bacteria (and the consequences of such interplay) is not well understood. In this work, through transcriptomic and genetic approaches, we have explored how quorum-sensing (QS) proficiency of V. cholerae affects this pathogen's response to subMIC doses of the aminoglycoside tobramycin (TOB). We show that the transcriptomic signature of V. cholerae in response to subMIC TOB depends highly on the presence of QS master regulator HapR. In parallel, we show that subMIC doses of TOB are able to negatively interfere with the AI-2/LuxS QS network of V. cholerae, which seems critical for survival to aminoglycoside treatment and TOB-mediated induction of SOS response in this species. This interplay between QS and aminoglycosides suggests that targeting QS signaling may be a strategy to enhance aminoglycoside efficacy in V. cholerae.


Assuntos
Aminoglicosídeos/farmacologia , Viabilidade Microbiana , Percepção de Quorum/efeitos dos fármacos , Vibrio cholerae/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Percepção de Quorum/genética , Resposta SOS em Genética/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tobramicina/farmacologia , Transcriptoma/genética , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
20.
PLoS Genet ; 17(10): e1009748, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34669693

RESUMO

Antibiotic resistance has become a major global issue. Understanding the molecular mechanisms underlying microbial adaptation to antibiotics is of keen importance to fight Antimicrobial Resistance (AMR). Aminoglycosides are a class of antibiotics that target the small subunit of the bacterial ribosome, disrupting translational fidelity and increasing the levels of misfolded proteins in the cell. In this work, we investigated the role of VchM, a DNA methyltransferase, in the response of the human pathogen Vibrio cholerae to aminoglycosides. VchM is a V. cholerae specific orphan m5C DNA methyltransferase that generates cytosine methylation at 5'-RCCGGY-3' motifs. We show that deletion of vchM, although causing a growth defect in absence of stress, allows V. cholerae cells to cope with aminoglycoside stress at both sub-lethal and lethal concentrations of these antibiotics. Through transcriptomic and genetic approaches, we show that groESL-2 (a specific set of chaperonin-encoding genes located on the second chromosome of V. cholerae), are upregulated in cells lacking vchM and are needed for the tolerance of vchM mutant to lethal aminoglycoside treatment, likely by fighting aminoglycoside-induced misfolded proteins. Interestingly, preventing VchM methylation of the four RCCGGY sites located in groESL-2 region, leads to a higher expression of these genes in WT cells, showing that the expression of these chaperonins is modulated in V. cholerae by DNA methylation.


Assuntos
Aminoglicosídeos/genética , Chaperoninas/genética , Citosina/metabolismo , Metilação de DNA/genética , DNA/genética , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA