Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement (N Y) ; 4: 37-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29955650

RESUMO

INTRODUCTION: Translational inhibition of amyloid precursor protein (APP) by Posiphen has been shown to reduce APP and its fragments in cell culture, animal models, and mildly cognitively impaired patients, making it a promising drug candidate for the treatment of Alzheimer's disease. METHODS: We used a mouse model of Alzheimer's disease (APP/presenilin-1) to examine Posiphen's efficacy, pharmacodynamics, and pharmacokinetics. RESULTS: Posiphen treatment normalized impairments in spatial working memory, contextual fear learning, and synaptic function in APP/presenilin-1 mice, without affecting their visual acuity, motor skills, or motivation and without affecting wild-type mice. Posiphen had a prolonged effect in reducing APP and all related peptides for at least 9 hours after the last dose. Its concentration was higher in the brain than in plasma, and the most abundant metabolite was N8-norPosiphen. DISCUSSION: This is the first study demonstrating the therapeutic efficacy of inhibiting the translation of APP and its fragments in an Alzheimer's disease model.

2.
J Neurochem ; 117(3): 359-74, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21320126

RESUMO

Current evidence suggests that Alzheimer's disease (AD) is a multi-factorial disease that starts with accumulation of multiple proteins. We have previously proposed that inhibition of γ-secretase may impair membrane recycling causing neurodegeneration starting at synapses (Sambamurti K., Suram A., Venugopal C., Prakasam A., Zhou Y., Lahiri D. K. and Greig N. H. A partial failure of membrane protein turnover may cause Alzheimer's disease: a new hypothesis. Curr. Alzheimer Res., 3, 2006, 81). We also proposed familal AD mutations increase Aß42 by inhibiting γ-secretase. Herein, we discuss the failure of Eli Lilly's γ-secretase inhibitor, semagacestat, in clinical trials in the light of our hypothesis, which extends the problem beyond toxicity of Aß aggregates. We elaborate that γ-secretase inhibitors lead to accumulation of amyloid precursor protein C-terminal fragments that can later be processed by γ-secretase to yields bursts of Aß to facilitate aggregation. Although we do not exclude a role for toxic Aß aggregates, inhibition of γ-secretase can affect numerous substrates other than amyloid precursor protein to affect multiple pathways and the combined accumulation of multiple peptides in the membrane may impair its function and turnover. Taken together, protein processing and turnover pathways play an important role in maintaining cellular homeostasis and unless we clearly see consistent disease-related increase in their levels or activity, we need to focus on preserving their function rather than inhibiting them for treatment of AD and similar diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA