Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38072238

RESUMO

Hepatic inflammation is commonly identified in Wilson disease (WD), a genetic disease of hepatic and brain copper accumulation. Copper accumulation is associated with increased oxidative stress and reactive oxygen species generation which may result in non-enzymatic oxidation of membrane-bound polyunsaturated fatty acids (PUFA). PUFA can be oxidized enzymatically via lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome P450 monooxygenases (CYP). Products of PUFA oxidation are collectively known as oxylipins (OXL) and are bioactive lipids that modulate hepatic inflammation. We examined hepatic OXL profiles at early stages of WD in two mouse models, the toxic milk mouse from The Jackson Laboratory (tx-j) and the Atp7b knockout on a C57Bl/6 background (Atp7b-/-B6). Targeted lipidomic analysis performed by ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry showed that in both tx-j and Atp7b-/-B6 mice, hepatic OXL profiles were altered with higher thromboxane and prostaglandins levels. The levels of oxidative stress marker, 9-HETE were increased more markedly in tx-j mice. However, both genotypes showed upregulated transcript levels of many genes related to oxidative stress and inflammation. Both genotypes showed higher prostaglandins, thromboxin along with higher PUFA-derived alcohols, diols, and ketones with altered epoxides; the expression of Alox5 was upregulated and many CYP-related genes were dysregulated. Pathway analyses show dysregulation in arachidonic acid and linoleic acid metabolism characterizes mice with WD. Our findings indicate alterations in hepatic PUFA metabolism in early-stage WD and suggest the upregulation of both, non-enzymatic ROS-dependent and enzymatic PUFA oxidation, which could have implications for hepatic manifestations in WD and represent potential targets for future therapies.


Assuntos
Degeneração Hepatolenticular , Camundongos , Animais , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Oxilipinas , Cobre/metabolismo , Ácidos Graxos Insaturados , Inflamação , Prostaglandinas
2.
Hepatol Commun ; 7(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695076

RESUMO

BACKGROUND: The clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, but little is known about other tissue involvement regarding metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B affects metabolic dysregulation in WD. We tested this hypothesis by evaluating the gut microbiota and lipidome in 2 mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in the intestine. METHODS: Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice (Atp7bΔIEC) were generated and characterized using targeted lipidome analysis following a high-fat diet challenge. RESULTS: Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated triglyceride and diglyceride, phospholipid, and sphingolipid metabolism in WD models. However, Atp7bΔIEC mice did not show gut microbiome differences compared to wild type. When challenged with a high-fat diet, Atp7bΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. CONCLUSIONS: Gut microbiome and lipidome underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge but not the microbiome profile, at least at early stages. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence the phenotype and the lipidome profile.


Assuntos
Degeneração Hepatolenticular , Animais , Camundongos , Degeneração Hepatolenticular/genética , Metabolismo dos Lipídeos/genética , Modelos Animais de Doenças , Esfingolipídeos , Intestinos
3.
Nutrients ; 15(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764794

RESUMO

Erythritol is a non-nutritive sugar replacement that can be endogenously produced by humans. Witkowski et al. reported that elevated circulating erythritol is associated with adverse cardiovascular events in three independent cohorts, demonstrated in vitro and ex vivo that erythritol promotes platelet activation, and showed faster clotting time in mice injected with erythritol. It was concluded that erythritol fosters enhanced thrombosis. This narrative review presents additional evidence that needs to be considered when evaluating these data and conclusions. We conducted a search of all studies related to erythritol exposure with focus on those that reported vascular health outcomes. Patients with chronically elevated erythritol levels due to inborn errors of metabolism do not exhibit higher platelet activation or thrombosis risk. Most long-term studies in which animals consumed high levels of erythritol do not support its role in platelet activation and thrombosis formation. Clinical data on the effects of chronic intake of erythritol are limited. Erythritol may be merely a marker of dysregulation in the Pentose Phosphate Pathway caused by impaired glycemia. However, this suggestion and the findings of Witkowski et al. need to be further examined. Clinical trials examining the long-term effects of erythritol consumption on cardiometabolic outcomes are required to test the causality between dietary erythritol and cardiometabolic risk. Until supportive data from these trials are available, it cannot be concluded that dietary erythritol promotes platelet activation, thrombosis, and cardiometabolic risk.


Assuntos
Doenças Cardiovasculares , Eritritol , Humanos , Camundongos , Animais , Eritritol/farmacologia , Dieta , Via de Pentose Fosfato , Causalidade , Doenças Cardiovasculares/etiologia
4.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711483

RESUMO

Background and aims: Major clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, and little is known about other tissues involvement in metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B could contribute to metabolic dysregulation in WD. We tested this hypothesis by evaluating gut microbiota and lipidome in two mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in intestine. Methods: Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice ( Atp7b ΔIEC ) was generated using B6.Cg-Tg(Vil1-cre)997Gum/J mice and Atp7b Lox/Lox mice, and characterized using targeted lipidome analysis following a high-fat diet challenge. Results: Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated tri- and diglyceride, phospholipid, and sphingolipid metabolism in WD models. When challenged with a high-fat diet, Atp7b ΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. Conclusion: Coordinated changes of gut microbiome and lipidome analyses underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence phenotypic presentations.

5.
Nutrients ; 15(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615861

RESUMO

The sugar alcohol erythritol is a relatively new food ingredient. It is naturally occurring in plants, however, produced commercially by fermentation. It is also produced endogenously via the pentose phosphate pathway (PPP). Consumers perceive erythritol as less healthy than sweeteners extracted from plants, including sucrose. This review evaluates that perspective by summarizing current literature regarding erythritol's safety, production, metabolism, and health effects. Dietary erythritol is 30% less sweet than sucrose, but contains negligible energy. Because it is almost fully absorbed and excreted in urine, it is better tolerated than other sugar alcohols. Evidence shows erythritol has potential as a beneficial replacement for sugar in healthy and diabetic subjects as it exerts no effects on glucose or insulin and induces gut hormone secretions that modulate satiety to promote weight loss. Long-term rodent studies show erythritol consumption lowers body weight or adiposity. However, observational studies indicate positive association between plasma erythritol and obesity and cardiometabolic disease. It is unlikely that dietary erythritol is mediating these associations, rather they reflect dysregulated PPP due to impaired glycemia or glucose-rich diet. However, long-term clinical trials investigating the effects of chronic erythritol consumption on body weight and risk for metabolic diseases are needed. Current evidence suggests these studies will document beneficial effects of dietary erythritol compared to caloric sugars and allay consumer misperceptions.


Assuntos
Eritritol , Obesidade , Humanos , Eritritol/farmacologia , Obesidade/prevenção & controle , Dieta , Álcoois Açúcares , Sacarose/farmacologia , Glucose , Peso Corporal , Açúcares
6.
Metabolites ; 12(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208265

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common liver pathology that includes steatosis, or non-alcoholic fatty liver (NAFL), and non-alcoholic steatohepatitis (NASH). Without a clear pathophysiological mechanism, it affects Hispanics disproportionately compared to other ethnicities. Polyunsaturated fatty acids (PUFAs) and inflammatory lipid mediators including oxylipin (OXL) and endocannabinoid (eCB) are altered in NAFLD and thought to contribute to its pathogenesis. However, the existence of ethnicity-related differences is not clear. We employed targeted lipidomic profiling for plasma PUFAs, non-esterified OXLs and eCBs in White Hispanics (HIS, n = 10) and Caucasians (CAU, n = 8) with biopsy-confirmed NAFL, compared with healthy control subjects (HC; n = 14 HIS; n = 8 CAU). NAFLD was associated with diminished long chain PUFA in HIS, independent of histological severity. Differences in plasma OXLs and eCBs characterized ethnicities in NASH, with lower arachidonic acid derived OXLs observed in HIS. The secondary analysis comparing ethnicities within NASH (n = 12 HIS; n = 17 CAU), confirms these ethnicity-related differences and suggests lower lipoxygenase(s) and higher soluble epoxide hydrolase(s) activities in HIS compared to CAU. While causes are not clear, these lipidomic differences might be with implications for NAFLD severity and are worth further investigation. We provide preliminary data indicating ethnicity-specific lipidomic signature characterizes NASH which requires further validation.

7.
Cell Mol Gastroenterol Hepatol ; 12(4): 1457-1477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34098115

RESUMO

BACKGROUND & AIMS: The pathogenesis of Wilson disease (WD) involves hepatic and brain copper accumulation resulting from pathogenic variants affecting the ATP7B gene and downstream epigenetic and metabolic mechanisms. Prior methylome investigations in human WD liver and blood and in the Jackson Laboratory (Bar Harbor, ME) C3He-Atp7btx-j/J (tx-j) WD mouse model revealed an epigenetic signature of WD, including changes in histone deacetylase (HDAC) 5. We tested the hypothesis that histone acetylation is altered with respect to copper overload and aberrant DNA methylation in WD. METHODS: We investigated class IIa HDAC4 and HDAC5 and H3K9/H3K27 histone acetylation in tx-j mouse livers compared with C3HeB/FeJ (C3H) control in response to 3 treatments: 60% kcal fat diet, D-penicillamine (copper chelator), and choline (methyl group donor). Experiments with copper-loaded hepatoma G2 cells were conducted to validate in vivo studies. RESULTS: In 9-week tx-j mice, HDAC5 levels increased significantly after 8 days of a 60% kcal fat diet compared with chow. In 24-week tx-j mice, HDAC4/5 levels were reduced 5- to 10-fold compared with C3H, likely through mechanisms involving HDAC phosphorylation. HDAC4/5 levels were affected by disease progression and accompanied by increased acetylation. D-penicillamine and choline partially restored HDAC4/5 and H3K9ac/H3K27ac to C3H levels. Integrated RNA and chromatin immunoprecipitation sequencing analyses revealed genes regulating energy metabolism and cellular stress/development, which, in turn, were regulated by histone acetylation in tx-j mice compared with C3H mice, with Pparα and Pparγ among the most relevant targets. CONCLUSIONS: These results suggest dietary modulation of class IIa HDAC4/5, and subsequent H3K9/H3K27 acetylation/deacetylation can regulate gene expression in key metabolic pathways in the pathogenesis of WD.


Assuntos
Cobre/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Degeneração Hepatolenticular/etiologia , Degeneração Hepatolenticular/metabolismo , Histonas/metabolismo , Acetilação , Animais , Linhagem Celular , Biologia Computacional/métodos , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Degeneração Hepatolenticular/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Fosforilação , Transdução de Sinais
8.
Free Radic Biol Med ; 172: 490-502, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34182070

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a progressive condition that includes steatosis (NAFL) and nonalcoholic steatohepatitis (NASH). In the U.S., Hispanics (HIS) are afflicted with NAFLD at a higher rate and severity compared to other ethnicities. To date, the mechanisms underlying this disparity have not been elucidated. In this pilot study, we compared untargeted plasma metabolomic profiles for primary metabolism, complex lipids, choline and related compounds between a group of HIS (n = 7) and White Caucasian (CAU, n = 8) subjects with obesity and biopsy-characterized NAFL to ethnicity-matched lean healthy controls (n = 14 HIS and 8 CAU). We also compared liver and plasma metabolomic profiles in a group of HIS and CAU subjects with obesity and NASH of comparable NAFLD Activity Scores, to BMI-matched NASH-free subjects in both ethnicities. Results highlight signs of metabolic dysregulation observed in HIS, independent of obesity, including higher plasma triglycerides, acylcarnitines, and free fatty acids. With NASH progression, there were ethnicity-related differences in the hepatic profile, including higher free fatty acids and lysophospholipids seen in HIS, suggesting lipotoxicity is involved in the progression of NASH. We also observed greater hepatic triglyceride content, higher plasma triglyceride concentrations and lower hepatic phospholipids with signs of impaired hepatic mitochondrial ß-oxidation. These findings provide preliminary evidence indicating ethnicity-related variations that could potentially modulate the risk for progression of NALD to NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Etnicidade , Hispânico ou Latino , Humanos , Lipidômica , Fígado , Fosfolipídeos , Projetos Piloto
9.
Liver Int ; 40(11): 2776-2787, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32996699

RESUMO

BACKGROUND AND AIMS: Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, with its main pathology attributed to copper-mediated oxidative damage. The limited therapeutic effect of copper chelators and the early occurrence of mitochondrial deficits, however, undermine the prevalence of this mechanism. METHODS: We characterized mitochondrial DNA copy number and mutations as well as bioenergetic deficits in blood from patients with WD and in livers of tx-j mice, a mouse model of hepatic copper accumulation. In vitro experiments with hepatocytes treated with CuSO4 were conducted to validate in vivo studies. RESULTS: Here, for the first time, we characterized the bioenergetic deficits in WD as consistent with a mitochondrial DNA depletion-like syndrome. This is evidenced by enriched DNA synthesis/replication pathways in serum metabolomics and decreased mitochondrial DNA copy number in blood of WD patients as well as decreased mitochondrial DNA copy number, increased citrate synthase activity, and selective Complex IV deficit in livers of the tx-j mouse model of WD. Tx-j mice treated with the copper chelator penicillamine, methyl donor choline or both ameliorated mitochondrial DNA damage but further decreased mitochondrial DNA copy number. Experiments with copper-loaded HepG2 cells validated the concept of a direct copper-mitochondrial DNA interaction. CONCLUSIONS: This study underlines the relevance of targeting the copper-mitochondrial DNA pool in the treatment of WD separate from the established copper-induced oxidative stress-mediated damage.


Assuntos
Degeneração Hepatolenticular , Animais , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , DNA Mitocondrial/genética , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/genética , Humanos , Fígado/metabolismo , Camundongos , Penicilamina
10.
Liver Res ; 4(1): 5-14, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32832193

RESUMO

Copper accumulation and deficiency are reciprocally connected to lipid metabolism. In Wilson disease (WD), which is caused by a genetic loss of function of the copper-transporting P-type ATPase beta, copper accumulates mainly in the liver and lipid metabolism is dysregulated. The underlying mechanisms linking copper and lipid metabolism in WD are not clear. Copper may impair metabolic machinery by direct binding to protein and lipid structures or by generating reactive oxygen species with consequent damage to cellular organelles vital to energy metabolism. In the liver, copper overload results in mitochondrial impairment, down-regulation of lipid metabolism, and the development of steatosis with an etiology not fully elucidated. Little is known regarding the effect of copper overload on extrahepatic energy homeostasis. This review aims to discuss alterations in hepatic energy metabolism associated with WD, highlights potential mechanisms involved in the development of hepatic and systemic dysregulation of lipid metabolism, and reviews current knowledge on the effects of copper overload on extrahepatic energy metabolism.

11.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779102

RESUMO

Wilson disease (WD) is a genetic copper overload condition characterized by hepatic and neuropsychiatric symptoms with a not well-understood pathogenesis. Dysregulated methionine cycle is reported in animal models of WD, though not verified in humans. Choline is essential for lipid and methionine metabolism. Defects in neurotransmitters as acetylcholine, and biogenic amines are reported in WD; however, less is known about their circulating precursors. We aimed to study choline, methionine, aromatic amino acids, and phospholipids in serum of WD subjects. Hydrophilic interaction chromatography-quadrupole time-of-flight mass spectrometry was employed to profile serum of WD subjects categorized as hepatic, neurologic, and pre-clinical. Hepatic transcript levels of genes related to choline and methionine metabolism were verified in the Jackson Laboratory toxic milk mouse model of WD (tx-j). Compared to healthy subjects, choline, methionine, ornithine, proline, phenylalanine, tyrosine, and histidine were significantly elevated in WD, with marked alterations in phosphatidylcholines and reductions in sphingosine-1-phosphate, sphingomyelins, and acylcarnitines. In tx-j mice, choline, methionine, and phosphatidylcholine were similarly dysregulated. Elevated choline is a hallmark dysregulation in WD interconnected with alterations in methionine and phospholipid metabolism, which are relevant to hepatic steatosis. The elevated phenylalanine, tyrosine, and histidine carry implications for neurologic manifestations and are worth further investigation.


Assuntos
Aminoácidos Aromáticos/metabolismo , Colina/metabolismo , Degeneração Hepatolenticular/metabolismo , Metionina/metabolismo , Animais , Cromatografia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica/métodos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA