Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38489079

RESUMO

The present study investigates the multiphasic nature of the mechanical behavior of human dermis. Motivated by experimental observations and by consideration of its composition, a quadriphasic model of the dermis is proposed, distinguishing solid matrix components, interstitial fluid and charged constituents moving within the fluid, i.e., anions and cations. Compression and tensile experiments with and without change of osmolarity of the bath are performed to characterize the chemo-mechanical coupling in the dermis. Model parameters are determined through inverse analysis. The computations predict a dominant role of the permeability in the determination of the temporal evolution of the mechanical response of the tissue. In line with the previous studies on other tissues, the analysis shows that an ideal model based on Donnan's equilibrium overestimates the osmotic pressure in skin for the case of very dilute solutions. The quadriphasic model is applied to predict changes in dermal cell environment and therefore alterations in what is called the "mechanome," associated with skin stretch. The simulations indicate that skin deformation causes a variation in several local variables, including in particular the electric field associated with a deformation-induced non-homogeneous distribution of fixed charges.

2.
Ann Biomed Eng ; 52(6): 1576-1590, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38424309

RESUMO

Supraphysiological stretches are exploited in skin expanders to induce tissue growth for autologous implants. As pregnancy is associated with large levels of sustained stretch, we investigated whether skin growth occurs in pregnancy. Therefore, we combined a mechanical model of skin and the observations from suction experiments on several body locations of five pregnant women at different gestational ages. The measurements show a continuous increase in stiffness, with the largest change observed during the last trimester. A comparison with numerical simulations indicates that the measured increase in skin stiffness is far below the level expected for the corresponding deformation of abdominal skin. A new set of simulations accounting for growth could rationalize all observations. The predicted amount of tissue growth corresponds to approximately 40% area increase before delivery. The results of the simulations also offered the opportunity to investigate the biophysical cues present in abdominal skin along gestation and to compare them with those arising in skin expanders. Alterations of the skin mechanome were quantified, including tissue stiffness, hydrostatic and osmotic pressure of the interstitial fluid, its flow velocity and electrical potential. The comparison between pregnancy and skin expansion highlights similarities as well as differences possibly influencing growth and remodeling.


Assuntos
Modelos Biológicos , Fenômenos Fisiológicos da Pele , Humanos , Feminino , Gravidez , Adulto , Pele/crescimento & desenvolvimento , Abdome/crescimento & desenvolvimento , Abdome/fisiologia , Estresse Mecânico
3.
Biomech Model Mechanobiol ; 23(3): 941-957, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351427

RESUMO

Endothelial cell monolayers line the inner surfaces of blood and lymphatic vessels. They are continuously exposed to different mechanical loads, which may trigger mechanobiological signals and hence play a role in both physiological and pathological processes. Computer-based mechanical models of cells contribute to a better understanding of the relation between cell-scale loads and cues and the mechanical state of the hosting tissue. However, the confluency of the endothelial monolayer complicates these approaches since the intercellular cross-talk needs to be accounted for in addition to the cytoskeletal mechanics of the individual cells themselves. As a consequence, the computational approach must be able to efficiently model a large number of cells and their interaction. Here, we simulate cytoskeletal mechanics by means of molecular dynamics software, generally suitable to deal with large, locally interacting systems. Methods were developed to generate models of single cells and large monolayers with hundreds of cells. The single-cell model was considered for a comparison with experimental data. To this end, we simulated cell interactions with a continuous, deformable substrate, and computationally replicated multistep traction force microscopy experiments on endothelial cells. The results indicate that cell discrete network models are able to capture relevant features of the mechanical behaviour and are thus well-suited to investigate the mechanics of the large cytoskeletal network of individual cells and cell monolayers.


Assuntos
Células Endoteliais , Modelos Biológicos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Citoesqueleto/metabolismo , Simulação por Computador , Comunicação Celular , Estresse Mecânico , Fenômenos Biomecânicos
4.
Prenat Diagn ; 44(3): 317-324, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168862

RESUMO

OBJECTIVE: To compare the biomechanical properties of fetal preterm membranes (20 + 0 weeks to 30 + 0 weeks) to those of the term (37 + 0 to 41 + 0 weeks). METHOD: Amnion and chorion were manually separated and samples were cut to the required geometry. Rectangular samples with (mode 1) and without (uniaxial) a notch, were tested for tearing energy, critical elongation, and tangent stiffness. Suture retention and inter-suture distance testing investigated the effect of suture placement. RESULTS: From the 15 preterm and 10 term placentas studied, no notable differences were observed in uniaxial testing. Mode 1 fracture testing showed a difference in tearing energy between the preterm and term chorion (0.025 ± 0.005 vs. 0.017 ± 0.005 J/m-1 ; p = 0.027) but not in the amnion (0.030 ± 0.017 vs. 0.029 ± 0.009 J/m-1 ; p = 0.895). Both preterm amnion and chorion showed a higher critical elongation compared with term (1.229 ± 0.057 vs. 1.166 ± 0.046; p = 0.019 and 1.307 ± 0.049 vs. 1.218 ± 0.058; p = 0.012). Preterm amnion had a higher suture retention strength than its term counterpart (0.189 ± 0.065 vs. 0.121 ± 0.031 N; p = 0.023). In inter-suture distance tests, no significant interaction was observed beyond 3 mm, but the preterm chorion showed less interaction at 1-2 mm distances. CONCLUSION: Preterm membranes have equivalent or superior tensile properties to term membranes. The chorion appears to contribute to the mechanical integrity of fetal membranes, particularly in preterm stages.


Assuntos
Âmnio , Membranas Extraembrionárias , Humanos , Gravidez , Feminino , Recém-Nascido , Córion , Placenta
5.
Prenat Diagn ; 44(1): 99-107, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185824

RESUMO

OBJECTIVE: To estimate stresses and strains in the uterine wall and fetal membranes with single/multi-port fetoscopy, simulating either a percutaneous access or via exteriorized uterus. STUDY DESIGN: Finite element models based on anatomical dimensions, material properties and boundary conditions were created to simulate stresses, strains and displacements on the uterine wall and fetal membranes during simulated fetal surgery either via exteriorized uterus or percutaneous approach, and with one or three cannulas. Clinically, we measured the anatomical layer thickness and cannula entry point displacement in patients undergoing single port percutaneous fetoscopy. RESULTS: Simulations demonstrate that single port percutaneous fetoscopy increases stress on the fetal membranes (+105%, 128 to 262 kPa) and uterine wall (+115%, 0.89 to 1.9 kPa) compared to exteriorized uterine access. Using three ports increases stress by 110% (148 to 312 kPa) on membranes and 113% (1.08 to 2.3 kPa) on uterine wall. Finite Element Method showed 0.75 cm uterine entry point displacement from the cutaneous entry, while clinical measurements demonstrated displacement of more than double (1.69 ± 0.58 cm), suggesting modeled measurements may be underestimations. CONCLUSION: The stresses and strains on the fetal membranes and uterus are double as high when entering percutaneously than via an exteriorized uterus. Based on what can be clinically measured, this may be an underestimation.


Assuntos
Cânula , Fetoscopia , Anormalidades Urogenitais , Gravidez , Feminino , Humanos , Fetoscopia/métodos , Análise de Elementos Finitos , Útero/cirurgia
6.
Biomater Adv ; 156: 213702, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992477

RESUMO

Human skin equivalents (HSEs) serve as important tools for mechanistic studies with human skin cells, drug discovery, pre-clinical applications in the field of tissue engineering and for skin transplantation on skin defects. Besides the cellular and extracellular matrix (ECM) components used for HSEs, physical constraints applied on the scaffold during HSEs maturation influence tissue organization, functionality, and homogeneity. In this study, we introduce a 3D-printed culture insert that exposes bi-layered HSEs to a static radial constraint through matrix adhesion. We examine the effect of various diameters of the ring-shaped culture insert on the HSE's characteristics and compare them to state-of-the-art unconstrained and planar constrained HSEs. We show that radial matrix constraint of HSEs regulates tissue contraction, promotes fibroblast and matrix organization that is similar to human skin in vivo and improves keratinocyte differentiation, epidermal stratification, and basement membrane formation depending on the culture insert diameter. Together, these data demonstrate that the degree of HSE's contraction is an important design consideration in skin tissue engineering. Therefore, this study can help to mimic various in vivo skin conditions and to increase the control of relevant tissue properties.


Assuntos
Queratinócitos , Pele , Humanos , Epiderme , Engenharia Tecidual , Membrana Basal
7.
Acta Biomater ; 170: 155-168, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598792

RESUMO

The mechanical properties of the skin determine tissue function and regulate dermal cell behavior. Yet measuring these properties remains challenging, as evidenced by the large range of elastic moduli reported in the literature-from below one kPa to hundreds of MPa. Here, we reconcile these disparate results by dedicated experiments at both tissue and cellular length scales and by computational models considering the multiscale and multiphasic tissue structure. At the macroscopic tissue length scale, the collective behavior of the collagen fiber network under tension provides functional tissue stiffness, and its properties determine the corresponding elastic modulus (100-200 kPa). The compliant microscale environment (0.1-10 kPa), probed by atomic force microscopy, arises from the ground matrix without engaging the collagen fiber network. Our analysis indicates that indentation-based elasticity measurements, although probing tissue properties at the cell-relevant length scale, do not assess the deformation mechanisms activated by dermal cells when exerting traction forces on the extracellular matrix. Using dermal-equivalent collagen hydrogels, we demonstrate that indentation measurements of tissue stiffness do not correlate with the behavior of embedded dermal fibroblasts. These results provide a deeper understanding of tissue mechanics across length scales with important implications for skin mechanobiology and tissue engineering. STATEMENT OF SIGNIFICANCE: Measuring the mechanical properties of the skin is essential for understanding dermal cell mechanobiology and designing tissue-engineered skin substitutes. However, previous results reported for the elastic modulus of skin vary by six orders of magnitude. We show that two distinct deformation mechanisms, related to the tension-compression nonlinearity of the collagen fiber network, can explain the large variations in elastic moduli. Furthermore, we show that microscale indentation, which is frequently used to assess the stiffness perceived by cells, fails to engage the fiber network, and therefore cannot predict the behavior of dermal fibroblasts in stiffness-tunable fibrous hydrogels. This has important implications for how to measure and interpret the mechanical properties of soft tissues across length scales.

8.
Biomater Adv ; 153: 213568, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591177

RESUMO

Alternative engineering approaches have led the design of implants with controlled physical features to minimize adverse effects in biological tissues. Similar efforts have focused on optimizing the design features of percutaneous VAD drivelines with the aim to prevent infection, omitting however a thorough look on the implant-skin interactions that govern local tissue reactions. Here, we utilized an integrated approach for the biophysical modification of transdermal implants and their evaluation by chronic sheep implantation in comparison to the standard of care VAD drivelines. We developed a novel method for the transfer of breath topographical features on thin wires with modular size. We examined the impact of implant's diameter, surface topography, and chemistry on macroscopic, histological, and physical markers of inflammation, fibrosis, and mechanical adhesion. All implants demonstrated infection-free performance. The fibrotic response was enhanced by the increasing diameter of implants but not influenced by their surface properties. The implants of small diameter promoted mild inflammatory responses with improved mechanical adhesion and restricted epidermal downgrowth, in both silicone and polyurethane coated transdermal wires. On the contrary, the VAD drivelines with larger diameter triggered severe inflammatory reactions with frequent epidermal downgrowth. We validated these effects by quantifying the infiltration of macrophages and the level of vascularization in the fibrotic zone, highlighting the critical role of size reduction for the benign integration of transdermal implants with skin. This insight on how the biophysical properties of implants impact local tissue reactions could enable new solutions on the transdermal transmission of power, signal, and mass in a broad range of medical devices.


Assuntos
Líquidos Corporais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Ovinos , Pele , Epiderme , Biofísica
9.
Sci Adv ; 9(35): eadh9219, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647410

RESUMO

Hyperosmotic stress occurs in several diseases, but its long-term effects are largely unknown. We used sorbitol-treated human fibroblasts in 3D culture to study the consequences of hyperosmotic stress in the skin. Sorbitol regulated many genes, which help cells cope with the stress condition. The most robustly regulated gene encodes serine protease 35 (PRSS35). Its regulation by hyperosmotic stress was dependent on the kinases p38 and JNK and the transcription factors NFAT5 and ATF2. We identified different collagens and collagen-associated proteins as putative PRSS35 binding partners. This is functionally important because PRSS35 affected the extracellular matrix proteome, which limited cell proliferation. The in vivo relevance of these findings is reflected by the coexpression of PRSS35 and its binding partners in human skin wounds, where hyperosmotic stress occurs as a consequence of excessive water loss. These results identify PRSS35 as a key regulator of the matrisome under hyperosmotic stress conditions.


Assuntos
Matriz Extracelular , Fibroblastos , Humanos , Endopeptidases , Sorbitol , Serina Proteases
10.
Mech Soft Mater ; 5(1): 5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465029

RESUMO

Non-invasive skin characterization devices are emerging as a valuable tool in clinical skin research. In recent years, the range of available experimental techniques and methods used to determine the biomechanical properties of skin has increased considerably. Although a substantial amount of work has been devoted to assessing the working principle of macroscopic skin characterization devices individually, a rationalization and comparison between them is still lacking. This motivated the present study, which aimed to characterize and compare three commonly used working principles: suction, dynamic shear loading, and indentation. A synthetic model system with tunable mechanical properties was used to assess the three devices, and the results rationalized based on corresponding finite element models. In vivo measurements were performed on healthy volunteers to investigate the capability of differentiating the biomechanical properties of skin at different body locations, and to assess the intra- and inter-rater reliability of each device. The present comparative analysis indicates that the analyzed functional principles perceive the stiffness of human skin differently, with relevant implications for the interpretation of the respective measurement results.

11.
Mech Ageing Dev ; 213: 111836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37301518

RESUMO

Aging is the major risk factor for chronic disease development. Cellular senescence is a key mechanism that triggers or contributes to age-related phenotypes and pathologies. The endothelium, a single layer of cells lining the inner surface of a blood vessel, is a critical interface between blood and all tissues. Many studies report a link between endothelial cell senescence, inflammation, and diabetic vascular diseases. Here we identify, using combined advanced AI and machine learning, the Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1B (DYRK1B) protein as a possible senolytic target for senescent endothelial cells. We demonstrate that upon induction of senescence in vitro DYRK1B expression is increased in endothelial cells and localized at adherens junctions where it impairs their proper organization and functions. DYRK1B knock-down or inhibition restores endothelial barrier properties and collective behavior. DYRK1B is therefore a possible target to counteract diabetes-associated vascular diseases linked to endothelial cell senescence.


Assuntos
Senoterapia , Doenças Vasculares , Humanos , Células Endoteliais/metabolismo , Fosforilação , Doenças Vasculares/metabolismo
12.
Biomater Adv ; 152: 213485, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302211

RESUMO

Ventricular assist devices (VADs) provide an alternative solution to heart transplantation for patients with end-stage heart failure. Insufficient hemocompatibility of VAD components can result in severe adverse events, such as thromboembolic stroke, and readmissions. To enhance VAD hemocompatibility, and avoid thrombus formation, surface modification techniques and endothelialization strategies are employed. In this work, a free form patterning topography is selected to facilitate the endothelialization of the outer surface of the inflow cannula (IC) of a commercial VAD. An endothelialization protocol for convoluted surfaces such as the IC is produced, and the retainment of the endothelial cell (EC) monolayer is evaluated. To allow this evaluation, a dedicated experimental setup is developed to simulate realistic flow phenomena inside an artificial, beating heart phantom with a VAD implanted on its apex. The procedural steps of mounting the system result to the impairment of the EC monolayer, which is further compromised by the developed flow and pressure conditions, as well as by the contact with the moving inner structures of the heart phantom. Importantly, the EC monolayer is better maintained in the lower part of the IC, which is more susceptible to thrombus formation and may therefore aid in minimizing the hemocompatibility related adverse events after the VAD implantation.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Coração Auxiliar , Trombose , Humanos , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/etiologia , Cânula , Coração Auxiliar/efeitos adversos
13.
Biomater Adv ; 145: 213241, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529095

RESUMO

Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Mecanotransdução Celular , Pressão Hidrostática , Pressão Osmótica , Diferenciação Celular
14.
Matrix Biol ; 113: 39-60, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367485

RESUMO

Aging is associated with progressive skin fragility and a tendency to tear, which can lead to severe clinical complications. The transcription factor NRF2 is a key regulator of the cellular antioxidant response, and pharmacological NRF2 activation is a promising strategy for the prevention of age-related diseases. Using a combination of molecular and cellular biology, histology, imaging and biomechanical studies we show, however, that constitutive genetic activation of Nrf2 in fibroblasts of mice suppresses collagen and elastin expression, resulting in reduced skin strength as seen in aged mice. Mechanistically, the "aging matrisome" results in part from direct Nrf2-mediated overexpression of a network of microRNAs that target mRNAs of major skin collagens and other matrix components. Bioinformatics and functional studies revealed high NRF2 activity in aged human fibroblasts in 3D skin equivalents and human skin biopsies, highlighting the translational relevance of the functional mouse data. Together, these results identify activated NRF2 as a promoter of age-related molecular and biomechanical skin features.


Assuntos
MicroRNAs , Envelhecimento da Pele , Humanos , Camundongos , Animais , Idoso , Envelhecimento da Pele/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Pele/metabolismo , Fenótipo
15.
Biomater Adv ; 141: 213134, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36191540

RESUMO

The behavior of cells and tissues in vivo is determined by the integration of multiple biochemical and mechanical signals. Of the mechanical signals, stretch has been studied for decades and shown to contribute to pathophysiological processes. Several different stretch devices have been developed for in vitro investigations of cell stretch. In this work, we describe a new 3D-printed uniaxial stretching device for studying cell response to rapid deformation. The device is a bistable compliant mechanism holding two equilibrium states-an unstretched and stretched configuration-without the need of an external actuator. Furthermore, it allows multiple simultaneous measurements of different levels of stretch on a single substrate and is compatible with standard immunofluorescence imaging of fixed cells as well as live-cell imaging. To demonstrate the effectiveness of the device to stretch cells, a test case using aligned myotubes is presented. Leveraging material area changes associated with deformation of the substrate, changes in nuclei density provided evidence of affine deformation between cells and substrate. Furthermore, intranuclear deformations were also assessed and shown to deform non-affinely. As a proof-of-principle of the use of the device for mechanobiological studies, we uniaxially stretched aligned healthy and dystrophic myotubes that displayed different passive mechanical responses, consistent with previous literature in the field. We also identified a new feature in the mechanoresponse of dystrophic myotubes, which is of potential interest for identifying the diseased cells based on a quick mechanical readout. While some applications of the device for elucidating passive mechanical responses are demonstrated, the simplicity of the device allows it to be potentially used for other modes of deformation with little modifications.

16.
iScience ; 25(10): 105157, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185369

RESUMO

In this backstory, researchers from Swiss Federal Institute of Technology (ETH Zurich) who initiated an interdisciplinary program to generate innovative solutions for different cardiovascular diseases, such as myocardial infarction, valvular replacement, and movement-based rehabilitation therapy, discuss the benefits and challenges of interdisciplinary research.

17.
Biomech Model Mechanobiol ; 21(2): 433-454, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34985590

RESUMO

Modelling and simulation in mechanobiology play an increasingly important role to unravel the complex mechanisms that allow resident cells to sense and respond to mechanical cues. Many of the in vivo mechanical loads occur on the tissue length scale, thus raising the essential question how the resulting macroscopic strains and stresses are transferred across the scales down to the cellular and subcellular levels. Since cells anchor to the collagen fibres within the extracellular matrix, the reliable representation of fibre deformation is a prerequisite for models that aim at linking tissue biomechanics and cell mechanobiology. In this paper, we consider the two-scale mechanical response of an affine structural model as an example of a continuum mechanical approach and compare it with the results of a discrete fibre network model. In particular, we shed light on the crucially different mechanical properties of the 'fibres' in these two approaches. While assessing the capability of the affine structural approach to capture the fibre kinematics in real tissues is beyond the scope of our study, our results clearly show that neither the macroscopic tissue response nor the microscopic fibre orientation statistics can clarify the question of affinity.


Assuntos
Matriz Extracelular , Modelos Biológicos , Fenômenos Biomecânicos , Biofísica , Simulação por Computador , Matriz Extracelular/fisiologia , Estresse Mecânico
18.
Eur Biophys J ; 51(2): 171-184, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34477935

RESUMO

The primary aim of this article is to review the clinical challenges related to the supply of power in implanted left ventricular assist devices (LVADs) by means of transcutaneous drivelines. In effect of that, we present the preventive measures and post-operative protocols that are regularly employed to address the leading problem of driveline infections. Due to the lack of reliable wireless solutions for power transfer in LVADs, the development of new driveline configurations remains at the forefront of different strategies that aim to power LVADs in a less destructive manner. To this end, skin damage and breach formation around transcutaneous LVAD drivelines represent key challenges before improving the current standard of care. For this reason, we assess recent strategies on the surface functionalization of LVAD drivelines, which aim to limit the incidence of driveline infection by directing the responses of the skin tissue. Moreover, we propose a class of power transfer systems that could leverage the ability of skin tissue to effectively heal short diameter wounds. In this direction, we employed a novel method to generate thin conductive wires of controllable surface topography with the potential to minimize skin disruption and eliminate the problem of driveline infections. Our initial results suggest the viability of the small diameter wires for the investigation of new power transfer systems for LVADs. Overall, this review uniquely compiles a diverse number of topics with the aim to instigate new research ventures on the design of power transfer systems for IMDs, and specifically LVADs.


Assuntos
Coração Auxiliar
19.
BJOG ; 129(7): 1039-1049, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34865300

RESUMO

OBJECTIVE: To evaluate the host- and biomechanical response to a fully absorbable poly-4-hydroxybutyrate (P4HB) scaffold in comparison with the response to polypropylene (PP) mesh. DESIGN: In vivo animal experiment. SETTING: KU Leuven Center for Surgical Technologies. POPULATION: Fourteen parous female Mule sheep. METHODS: P4HB scaffolds were surgically implanted in the posterior vaginal wall of sheep. The comparative PP mesh data were obtained from an identical study protocol performed previously. MAIN OUTCOME MEASURES: Gross necropsy, host response and biomechanical evaluation of explants, and the in vivo P4HB scaffold degradation were evaluated at 60- and 180-days post-implantation. Data are reported as mean ± standard deviation (SD) or standard error of the mean (SEM). RESULTS: Gross necropsy revealed no implant-related adverse events using P4HB scaffolds. The tensile stiffness of the P4HB explants increased at 180-days (12.498 ± 2.66 N/mm SEM [p =0.019]) as compared to 60-days (4.585 ± 1.57 N/mm) post-implantation, while P4HB degraded gradually. P4HB scaffolds exhibited excellent tissue integration with dense connective tissue and a moderate initial host response. P4HB scaffolds induced a significantly higher M2/M1 ratio (1.70 ± 0.67 SD, score 0-4), as compared to PP mesh(0.99 ± 0.78 SD, score 0-4) at 180-days. CONCLUSIONS: P4HB scaffold facilitated a gradual load transfer to vaginal tissue over time. The fully absorbable P4HB scaffold, in comparison to PP mesh, has a favorable host response with comparable load-bearing capacity. If these results are also observed at longer follow-up in-vivo, a clinical study using P4HB for vaginal POP surgery may be warranted to demonstrate efficacy. TWEETABLE ABSTRACT: Degradable vaginal P4HB implant might be a solution for treatment of POP.


Assuntos
Polipropilenos , Telas Cirúrgicas , Animais , Fenômenos Biomecânicos , Feminino , Humanos , Hidroxibutiratos , Ovinos , Telas Cirúrgicas/efeitos adversos , Vagina/cirurgia
20.
Burns Trauma ; 9: tkab028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604394

RESUMO

BACKGROUND: Hypertrophic scarring after burn injury is one of the greatest unmet challenges in patients with burn injuries. A better understanding of the characteristics of scar maturation and early prediction of the long-term outcome of scarring are prerequisites for improving targeted therapies and pivotal for patient counselling. METHODS: Repeated measurements of scar stiffness in 11 pediatric patients were performed over the course of 1 year using 2 suction devices, the Cutometer and the Nimble. In addition, the observer pliability score of the Patient and Observer Scar Assessment Scale was applied. This longitudinal study allowed quantification of the ability of each of the measured parameters to reflect scar maturation, as indicated by change in skin pliability/stiffness, over time (using linear regression); the ability to distinguish individual patients (intraclass correlation coefficient (ICC)); the correlation of the devices (Spearman correlation coefficient); and the ability to predict long-term scar maturation based on early scar assessment (using receiver operating characteristic). RESULTS: All the tools used showed significant longitudinal decrease of scar stiffness from 3 months until 12 months after the injury. The Nimble (ICCpatient Nimble = 0.99) and the Cutometer (ICCpatient Cuto = 0.97) demonstrated an excellent ability to distinguish between individual patients. The Nimble seemed to be able to predict the 12-month pliability of scars based on early (3-month) measurements (area under the curve (AUC)12m POSAS = 0.67; AUC12m C = 0.46; AUC12m N = 0.79). CONCLUSIONS: The results of this preliminary study suggest that all 3 tools provide suitable means to quantify alterations in scar stiffness over time. Initial evidence suggests the Nimble is most favorable for predicting changes in stiffness associated with long-term scar maturation. Further studies with a larger sample size are required to validate tissue suction as a clinical tool for analysis of changes of scar stiffness over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA