Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 53(32): 13416-13426, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39051943

RESUMO

Single-atom (group 15 and group 16 anions) bridged dimetallic complexes of low oxidation state uranium provide a convenient route to implement multielectron transfer and promote magnetic communication in uranium chemistry, but remain extremely rare. Here we report the synthesis, redox and magnetic properties of N3-, O2-, and S2- bridged diuranium complexes supported by bulky aryloxide ligands. The U(IV)/U(IV) nitride [Cs(THF)8][(U(OAr)3)2(µ-N)], 1 could be prepared and characterized but could not be reduced. Reduction of the neutral U(IV)/U(IV) complexes [(U(OAr)3)2(µ-X)] A (X = O) and B (X = S) led to the isolation and characterization of the U(IV)/U(III) and U(III)/U(III) analogues. Complexes [(K(THF)4)2(U(OAr)2)2(µ-S)2], 5 and [K(2.2.2-cryptand)]2[(U(OAr)3)2(µ-S)], 6 are the first examples of U(III) sulphide bridged complexes. Computational studies and redox properties allow the reactivity of the dimetallic complexes to be related to their electronic structure.

2.
Chem Sci ; 15(18): 6874-6883, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725506

RESUMO

Synthetic strategies to isolate molecular complexes of lanthanides, other than cerium, in the +4 oxidation state remain elusive, with only four complexes of Tb(iv) isolated so far. Herein, we present a new approach for the stabilization of Tb(iv) using a siloxide tripodal trianionic ligand, which allows the control of unwanted ligand rearrangements, while tuning the Ln(iii)/Ln(iv) redox-couple. The Ln(iii) complexes, [LnIII((OSiPh2Ar)3-arene)(THF)3] (1-LnPh) and [K(toluene){LnIII((OSiPh2Ar)3-arene)(OSiPh3)}] (2-LnPh) (Ln = Ce, Tb, Pr), of the (HOSiPh2Ar)3-arene ligand were prepared. The redox properties of these complexes were compared to those of the Ln(iii) analogue complexes, [LnIII((OSi(OtBu)2Ar)3-arene)(THF)] (1-LnOtBu) and [K(THF)6][LnIII((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (2-LnOtBu) (Ln = Ce, Tb), of the less electron-donating siloxide trianionic ligand, (HOSi(OtBu)2Ar)3-arene. The cyclic voltammetry studies showed a cathodic shift in the oxidation potential for the cerium and terbium complexes of the more electron-donating phenyl substituted scaffold (1-LnPh) compared to those of the tert-butoxy (1-LnOtBu) ligand. Furthermore, the addition of the -OSiPh3 ligand further shifts the potential cathodically, making the Ln(iv) ion even more accessible. Notably, the Ce(iv) complexes, [CeIV((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (3-CeOtBu) and [CeIV((OSiPh2Ar)3-arene)(OSiPh3)(THF)2] (3-CePh), were prepared by chemical oxidation of the Ce(iii) analogues. Chemical oxidation of the Tb(iii) and Pr(iii) complexes (2-LnPh) was also possible, in which the Tb(iv) complex, [TbIV((OSiPh2Ar)3-arene)(OSiPh3)(MeCN)2] (3-TbPh), was isolated and crystallographically characterized, yielding the first example of a Tb(iv) supported by a polydentate ligand. The versatility and robustness of these siloxide arene-anchored platforms will allow further development in the isolation of more oxidizing Ln(iv) ions, widening the breadth of high-valent Ln chemistry.

3.
Chem Sci ; 15(18): 6842-6852, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725514

RESUMO

End-on binding of dinitrogen to low valent metal centres is common in transition metal chemistry but remains extremely rare in f-elements chemistry. In particular, heterobimetallic end-on N2 bridged complexes of lanthanides are unprecedented despite their potential relevance in catalytic reduction of dinitrogen. Here we report the synthesis and characterization of a series of N2 bridged heterobimetallic complexes of U(iii), Ln(iii) and Ln(ii) which were prepared by reacting the Fe dinitrogen complex [Fe(depe)2(N2)] (depe = 1,2-bis(diethylphosphino)-ethane), complex A with [MIII{N(SiMe3)2}3] (M = U, Ce, Sm, Dy, Tm) and [LnII{N(SiMe3)2}2], (Ln = Sm, Yb). Despite the lack of reactivity of the U(iii), Ln(iii) and Ln(ii) amide complexes with dinitrogen, the end-on dinitrogen bridged heterobimetallic complexes [{Fe(depe)2}(µ-η1:η1-N2)(M{N(SiMe3)2}3)], 1-M (M = U(iii), Ce(iii), Sm(iii), Dy(iii) and Tm(iii)), [{Fe(depe)2}(µ-η1:η1-N2)(Ln{N(SiMe3)2}2)], 1*-Ln (Ln = Sm(ii), Yb(ii)) and [{Fe(depe)2(µ-η1:η1-N2)}2{SmII{N(SiMe3)2}2}], 3 could be prepared. The synthetic method used here allowed to isolate unprecedented end-on bridging N2 complexes of divalent lanthanides which provide relevant structural models for the species involved in the catalytic reduction of dinitrogen by Fe/Sm(ii) systems. Computational studies showed an essentially electrostatic interaction of the end-on bridging N2 with both Ln(iii) and Ln(ii) complexes with the degree of N2 activation correlating with their Lewis acidity. In contrast, a back-bonding covalent contribution to the U(iii)-N2Fe bond was identified by computational studies. Computational studies also suggest that end-on binding of N2 to U(iii) and Ln(ii) complexes is favoured for the iron-bound N2 compared to free N2 due to the higher N2 polarization.

4.
Inorg Chem ; 63(21): 9527-9538, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38217471

RESUMO

U(IV) cyclometalated complexes have shown rich reactivity, but their low oxidation state analogues still remain rare. Herein, we report the isolation of [K(2.2.2-cryptand)][UIII{N(SiMe3)2}2(κ2-C,N-CH2SiMe2NSiMe3)], 1, from the reduction of [UIII{N(SiMe)2}3] with KC8 and 2.2.2-cryptand at room temperature. Cyclic voltammetry studies demonstrate that 1 has a reduction potential similar to that of the previously reported [K(2.2.2-cryptand)][UII{N(SiMe)2}3] (Epc = -2.6 V versus Fc+/0 and Epc = -2.8 V versus Fc+/0, respectively). Complex 1, indeed, shows similar reducing abilities upon reactions with 4,4'-bipyridine, 2,2'-bipyridine, and 1-azidoadamantane. Interestingly, 1 was also found to be the first example of a mononuclear U(III) complex that is capable of reducing pyridine. In addition, it is shown that a wide variety of substrates can be inserted into the U-C bond, forming new U(III) metallacycles. These results highlight that cyclometalated U(III) complexes can serve as versatile precursors for a broad range of reactivity and for assembling a variety of novel chemical architectures.

5.
Angew Chem Int Ed Engl ; 63(6): e202317346, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100190

RESUMO

The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2 Ar)3 -arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(Ot Bu)2 Ar)3 -arene)(THF)2 ] (2OtBu ) and [K(2.2.2-cryptand)][Th((OSiPh2 Ar)3 -arene)(THF)2 ](2Ph -crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2 O, COT, CHT, Ph2 N2 , Ph3 PS and O2 ) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA