Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(12): e0165123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054734

RESUMO

IMPORTANCE: Cellulose diacetate (CDA) is a promising alternative to conventional plastics due to its versatility in manufacturing and low environmental persistence. Previously, our group demonstrated that CDA is susceptible to biodegradation in the ocean on timescales of months. In this study, we report the composition of microorganisms driving CDA degradation in the coastal ocean. We found that the coastal ocean harbors distinct bacterial taxa implicated in CDA degradation and these taxa have not been previously identified in prior CDA degradation studies, indicating an unexplored diversity of CDA-degrading bacteria in the ocean. Moreover, the shape of the plastic article (e.g., a fabric, film, or foam) and plasticizer in the plastic matrix selected for different microbial communities. Our findings pave the way for future studies to identify the specific species and enzymes that drive CDA degradation in the marine environment, ultimately yielding a more predictive understanding of CDA biodegradation across space and time.


Assuntos
Microbiota , Plásticos , Biopolímeros , Bactérias/genética , Biodegradação Ambiental , Oceanos e Mares
2.
Environ Sci Technol ; 56(19): 13810-13819, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103552

RESUMO

Sunlight chemically transforms marine plastics into a suite of products, with formulation─the specific mixture of polymers and additives─driving rates and products. However, the effect of light-driven transformations on subsequent microbial lability is poorly understood. Here, we examined the interplay between photochemical and biological degradation of fabrics made from cellulose diacetate (CDA), a biobased polymer used commonly in consumer products. We also examined the influence of ∼1% titanium dioxide (TiO2), a common pigment and photocatalyst. We sequentially exposed CDA to simulated sunlight and native marine microbes to understand how photodegradation influences metabolic rates and pathways. Nuclear magnetic resonance spectroscopy revealed that sunlight initiated chain scission reactions, reducing CDA's average molecular weight. Natural abundance carbon isotope measurements demonstrated that chain scission ultimately yields CO2, a newly identified abiotic loss term of CDA in the environment. Measurements of fabric mass loss and enzymatic activities in seawater implied that photodegradation enhanced biodegradation by performing steps typically facilitated by cellulase. TiO2 accelerated CDA photodegradation, expediting biodegradation. Collectively, these findings (i) underline the importance of formulation in plastic's environmental fate and (ii) suggest that overlooking synergy between photochemical and biological degradation may lead to overestimates of marine plastic persistence.


Assuntos
Celulases , Luz Solar , Dióxido de Carbono , Isótopos de Carbono , Celulose/análogos & derivados , Oceanos e Mares , Plásticos/química , Polímeros , Titânio/química
3.
ACS Environ Au ; 2(2): 128-135, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-37101587

RESUMO

In May 2021, the M/V X-Press Pearl cargo ship caught fire 18 km off the west coast of Sri Lanka and spilled ∼1680 tons of spherical pieces of plastic or "nurdles" (∼5 mm; white in color). Nurdles are the preproduction plastic used to manufacture a wide range of end products. Exposure to combustion, heat, and chemicals led to agglomeration, fragmentation, charring, and chemical modification of the plastic, creating an unprecedented complex spill of visibly burnt plastic and unburnt nurdles. These pieces span a continuum of colors, shapes, sizes, and densities with high variability that could impact cleanup efforts, alter transport in the ocean, and potentially affect wildlife. Visibly burnt plastic was 3-fold more chemically complex than visibly unburnt nurdles. This added chemical complexity included combustion-derived polycyclic aromatic hydrocarbons. A portion of the burnt material contained petroleum-derived biomarkers, indicating that it encountered some fossil-fuel products during the spill. The findings of this research highlight the added complexity caused by the fire and subsequent burning of plastic for cleanup operations, monitoring, and damage assessment and provides recommendations to further understand and combat the impacts of this and future spills.

4.
Metallomics ; 13(12)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34694406

RESUMO

Pseudoalteromonas (BB2-AT2) is a ubiquitous marine heterotroph, often associated with labile organic carbon sources in the ocean (e.g. phytoplankton blooms and sinking particles). Heterotrophs hydrolyze exported photosynthetic materials, components of the biological carbon pump, with the use of diverse metalloenzymes containing zinc (Zn), manganese (Mn), cobalt (Co), and nickel (Ni). Studies on the metal requirements and cytosolic utilization of metals for marine heterotrophs are scarce, despite their relevance to global carbon cycling. Here, we characterized the Zn, Mn, Co, and Ni metallome of BB2-AT2. We found that the Zn metallome is complex and cytosolic Zn is associated with numerous proteins for transcription (47.2% of the metallome, obtained from singular value decomposition of the metalloproteomic data), translation (33.5%), proteolysis (12.8%), and alkaline phosphatase activity (6.4%). Numerous proteolytic enzymes also appear to be putatively associated with Mn, and to a lesser extent, Co. Putative identification of the Ni-associated proteins, phosphoglucomutase and a protein in the cupin superfamily, provides new insights for Ni utilization in marine heterotrophs. BB2-AT2 relies on numerous transition metals for proteolytic and phosphatase activities, inferring an adaptative potential to metal limitation. Our field observations of increased alkaline phosphatase activity upon addition of Zn in field incubations suggest that such metal limitation operates in sinking particulate material collected from sediment traps. Taken together, this study improves our understanding of the Zn, Mn, Co, and Ni metallome of marine heterotrophic bacteria and provides novel and mechanistic frameworks for understanding the influence of nutrient limitation on biogeochemical cycling.


Assuntos
Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Manganês/metabolismo , Biologia Marinha , Metaloproteínas/metabolismo , Níquel/metabolismo , Proteoma , Pseudoalteromonas/metabolismo , Zinco/metabolismo , Proteólise
5.
Metallomics ; 12(5): 654-667, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32301469

RESUMO

Fe is a critical nutrient to the marine biological pump, which is the process that exports photosynthetically fixed carbon in the upper ocean to the deep ocean. Fe limitation controls photosynthetic activity in major regions of the oceans, and the subsequent degradation of exported photosynthetic material is facilitated particularly by marine heterotrophic bacteria. Despite their importance in the carbon cycle and the scarcity of Fe in seawater, the Fe requirements, storage and cytosolic utilization of these marine heterotrophs has been less studied. Here, we characterized the Fe metallome of Pseudoalteromonas (BB2-AT2). We found that with two copies of bacterioferritin (Bfr), Pseudoalteromonas possesses substantial capacity for luxury uptake of Fe. Fe : C in the whole cell metallome was estimated (assuming C : P stoichiometry ∼51 : 1) to be between ∼83 µmol : mol Fe : C, ∼11 fold higher than prior marine bacteria surveys. Under these replete conditions, other major cytosolic Fe-associated proteins were observed including superoxide dismutase (SodA; with other metal SOD isoforms absent under Fe replete conditions) and catalase (KatG) involved in reactive oxygen stress mitigation and aconitase (AcnB), succinate dehydrogenase (FrdB) and cytochromes (QcrA and Cyt1) involved in respiration. With the aid of singular value decomposition (SVD), we were able to computationally attribute peaks within the metallome to specific metalloprotein contributors. A putative Fe complex TonB transporter associated with the closely related Alteromonas bacterium was found to be abundant within the Pacific Ocean mesopelagic environment. Despite the extreme scarcity of Fe in seawater, the marine heterotroph Pseudoalteromonas has expansive Fe storage capacity and utilization strategies, implying that within detritus and sinking particles environments, there is significant opportunity for Fe acquisition. Together these results imply an evolved dedication of marine Pseudoalteromonas to maintaining an Fe metalloproteome, likely due to its dependence on Fe-based respiratory metabolism.


Assuntos
Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/classificação , Grupo dos Citocromos b/metabolismo , Ferritinas/classificação , Ferritinas/metabolismo , Ferro/metabolismo , Metaloproteínas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Pseudoalteromonas/metabolismo
6.
J Am Chem Soc ; 142(10): 4762-4768, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32069400

RESUMO

Developing future high performance adhesives is predicated upon achieving properties including strength and ductility. However, designing tough materials that are simultaneously strong and soft is usually contradictory in nature. Biological materials including shells and wood achieve impressive toughness by using weak bonds to connect larger structures at several length scales. Here, we show that this toughness design approach can be applied to synthetic adhesives. A biomimetic adhesive polymer, poly(catechol-acrylic acid), was examined in conjunction with several compounds containing two organic functional groups. In a typical example, the diol ethylene glycol decreased the overall system modulus. Performance was seen to increase significantly. Spectroscopic and physical methods indicated that these bifunctional additives created an interpolymeric network of weak hydrogen bonds. Material toughness was enhanced when breakable bonds were available to dissipate mechanical stresses while leaving the surrounding matrix intact. These discoveries illustrate how a biological materials strategy of interplay between strength and ductility can be achieved with sacrificial bonds in an adhesive. Such an approach may be a general principle applicable to designing higher performance electronics, transportation, and aerospace systems.


Assuntos
Resinas Acrílicas/química , Adesivos/química , Materiais Biomiméticos/química , Catecóis/química , Ligação de Hidrogênio
7.
Angew Chem Int Ed Engl ; 53(32): 8320-2, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24888243

RESUMO

Aromatized cationic [(PNN)Re(π acid)(O)2](+) (1) and dearomatized neutral [(PNN*)Re(π acid)(O)2] (2) complexes (where π acid=CO (a), tBuNC (b), or (2,6-Me2)PhNC (c)), possessing both π-donor and π-acceptor ligands, have been synthesized and fully characterized. Reaction of [(PNN)Re(O)2](+) (4) with lithiumhexamethyldisilazide (LiHMDS) yield the dearomatized [(PNN*)Re(O)2] (3). Complexes 1 and 2 are prepared from the reaction of 4 and 3, respectively, with CO or isocyanides. Single-crystal X-ray structures of 1 a and 1 b show the expected trans-dioxo structure, in which the oxo ligands occupy the axial positions and the π-acidic ligand occupies the equatorial plane in an overall octahedral geometry about the rhenium(V) center. DFT studies revealed the stability of complexes 1 and 2 arises from a π-backbonding interaction between the d(xy) orbital of rhenium, the π orbital of the oxo ligands, and the π* orbital of CO/isocyanide.

8.
ChemSusChem ; 7(8): 2342-50, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24807741

RESUMO

Self-assembled nanoparticulates of porous sulfonated carbonaceous TiO2 material that contain Brønsted and Lewis acidic sites were prepared by a one-pot synthesis method. The material was characterized by XRD, FTIR spectroscopy, NH3 temperature-programmed desorption, pyridine FTIR spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, N2 -sorption, atomic absorbance spectroscopy, and inductively coupled plasma optical emission spectroscopy. The carbonaceous heterogeneous catalyst (Glu-TsOH-Ti) with a Brønsted-to-Lewis acid density ratio of 1.2 and more accessible acid sites was effective to produce 5-hydroxymethylfurfural and furfural from biomass-derived mono- and disaccharides and xylose in a biphasic solvent that comprised water and biorenewable methyltetrahydrofuran. The catalyst was recycled in four consecutive cycles with a total loss of only 3 % activity. Thus, Glu-TsOH-Ti, which contains isomerization and dehydration catalytic sites and is based on a cheap and biorenewable carbon support, is a sustainable catalyst for the production of furfurals, platform chemicals for biofuels and chemicals.


Assuntos
Furaldeído/análogos & derivados , Química Verde , Ácidos de Lewis/química , Carboidratos/química , Catálise , Furaldeído/síntese química , Furaldeído/química , Nanoestruturas/química , Nitrogênio/química , Água/química
9.
J Am Soc Mass Spectrom ; 24(10): 1616-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934547

RESUMO

Direct analysis in real time mass spectrometry (DART-MS) was used to analyze ionic liquids (ILs) containing either imidazolium or phosphonium cations combined with different types of inorganic and organic anions. Ionic liquids were directly inserted into the ionization source using a glass probe without dissolution into organic solvents. Mass spectra of the ILs were collected in both positive and negative mode with a linear ion-trap instrument. The intact cation of the compound was typically the dominant peak in positive mass spectra and cluster ion formation was present. Some individual anions were not readily observed in the negative mass spectra (based on the type of anion); however, the mass difference of adjacent cluster ions equal the mass of a complete IL and the anion mass could be verified by subtracting the known cation mass. The degree and intensity of the cluster ion formations was found to be dependent on the nature of the specific ILs as well as the DART temperature gas stream.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA