Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928223

RESUMO

Mutations affecting codon 172 of the isocitrate dehydrogenase 2 (IDH2) gene define a subgroup of sinonasal undifferentiated carcinomas (SNUCs) with a relatively favorable prognosis and a globally hypermethylated phenotype. They are also recurrent (along with IDH1 mutations) in gliomas, acute myeloid leukemia, and intrahepatic cholangiocarcinoma. Commonly reported mutations, all associated with aberrant IDH2 enzymatic activity, include R172K, R172S, R172T, R172G, and R172M. We present a case of SNUC with a never-before-described IDH2 mutation, R172A. Our report compares the methylation pattern of our sample to other cases from the Gene Expression Omnibus database. Hierarchical clustering suggests a strong association between our sample and other IDH-mutant SNUCs and a clear distinction between sinonasal normal tissues and tumors. Principal component analysis (PCA), using 100 principal components explaining 94.5% of the variance, showed the position of our sample to be within 1.02 standard deviation of the other IDH-mutant SNUCs. A molecular modeling analysis of the IDH2 R172A versus other R172 variants provides a structural explanation to how they affect the protein active site. Our findings thus suggest that the R172A mutation in IDH2 confers a gain of function similar to other R172 mutations in IDH2, resulting in a similar hypermethylated profile.


Assuntos
Carcinoma , Metilação de DNA , Isocitrato Desidrogenase , Neoplasias do Seio Maxilar , Mutação , Humanos , Isocitrato Desidrogenase/genética , Metilação de DNA/genética , Carcinoma/genética , Carcinoma/patologia , Neoplasias do Seio Maxilar/genética , Neoplasias do Seio Maxilar/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Idoso
2.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502238

RESUMO

Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death process. To better understand these mechanisms, we herein study the role of PRC2, specifically EZH2, which often initiates the gene inhibition by PRC1. We observed that the epigenetic mark H3K27me3 generated by EZH2 was progressively and strongly expressed in some individual photoreceptors and that the H3K27me3-positive cell number increased before cell death. H3K27me3 accumulation occurs between early (accumulation of cGMP) and late (CDK4 expression) events of retinal degeneration. EZH2 hyperactivity was observed in four recessive and two dominant mouse models of retinal degeneration, as well as two dog models and one IRD patient. Acute pharmacological EZH2 inhibition by intravitreal injection decreased the appearance of H3K27me3 marks and the number of TUNEL-positive cells revealing that EZH2 contributes to the cell death process. Finally, we observed that the absence of the H3K27me3 mark is a biomarker of gene therapy treatment efficacy in XLRPA2 dog model. PRC2 and PRC1 are therefore important actors in the degenerative process of multiple forms of IRD.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Proteínas do Olho/fisiologia , Complexo Repressor Polycomb 1/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/patologia , Animais , Metilação de DNA , Cães , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/etiologia , Retinose Pigmentar/metabolismo
3.
Front Neurosci ; 14: 571293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324144

RESUMO

PURPOSE: was to create an in vitro model of human retinal detachment (RD) to study the mechanisms of photoreceptor death. METHODS: Human retinas were obtained through eye globe donations for research purposes and cultivated as explants. Cell death was investigated in retinas with (control) and without retinal pigment epithelium (RPE) cells to mimic RD. Tissues were studied at different time points and immunohistological analyses for TUNEL, Cleaved caspase3, AIF, CDK4 and the epigenetic mark H3K27me3 were performed. Human and monkey eye globes with retinal detachment served as controls. RESULTS: The number of TUNEL-positive cells, compared between 1 and 7 days, increased with time in both retinas with RPE (from 1.2 ± 0.46 to 8 ± 0.89, n = 4) and without RPE (from 2.6 ± 0.73 to 16.3 ± 1.27, p < 0.014). In the group without RPE, cell death peaked at day 3 (p = 0.014) and was high until day 7. Almost no Cleaved-Caspase3 signal was observed, whereas a transient augmentation at day 3 of AIF-positive cells was observed to be about 10-fold in comparison to the control group (n = 2). Few CDK4-positive cells were found in both groups, but significantly more in the RD group at day 7 (1.8 ± 0.24 vs. 4.7 ± 0.58, p = 0.014). The H3K27me3 mark increased by 7-fold after 5 days in the RD group (p = 0.014) and slightly decreased at day 7 and was also observed to be markedly increased in human and monkey detached retina samples. CONCLUSION: AIF expression coincides with the first peak of cell death, whereas the H3K27me3 mark increases during the cell death plateau, suggesting that photoreceptor death is induced by different successive pathways after RD. This in vitro model should permit the identification of neuroprotective drugs with clinical relevance.

4.
Adv Exp Med Biol ; 1074: 359-365, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721964

RESUMO

Retinitis Pigmentosa (RP) is a class of hereditary retinal dystrophy associated with gradual visual failure and a subsequent loss of light-sensitive cells in the retina, leading to blindness. Many mutated genes were found to be causative of this disease. Despite a number of compiling efforts, the process of cell death in photoreceptors remains to be clearly elucidated. We recently reported an abnormal cell cycle reentry in photoreceptors undergoing degeneration in Rd1 mice, a model of RP, and identified the polycomb repressive complex 1 (PRC1) core component BMI1 as a critical molecular factor orchestrating the cell death mechanism. As the cell death rescue in Rd1;Bmi-1 KO mice was independent on the conventional Ink4a/Arf pathways, we now explored the structural properties of BMI1 in order to examine the differential expression of its posttranslational modifications in Rd1 retina. Our results suggest that BMI1 cell death induction in Rd1 is not related to its phosphorylation status. We therefore propose the epigenetic activity of BMI1 as an alternative route for BMI1-mediated toxicity in Rd1.


Assuntos
Proteínas do Olho/fisiologia , Células Fotorreceptoras de Vertebrados/patologia , Complexo Repressor Polycomb 1/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/metabolismo , Retinose Pigmentar/patologia , Animais , Apoptose , Cromatina/química , Cromatina/ultraestrutura , Fragmentação do DNA , DNA Super-Helicoidal/química , Modelos Animais de Doenças , Proteínas do Olho/química , Camundongos , Camundongos Knockout , Camundongos Mutantes , Modelos Biológicos , Necrose , Fosforilação , Células Fotorreceptoras de Vertebrados/metabolismo , Complexo Repressor Polycomb 1/química , Complexo Repressor Polycomb 1/deficiência , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/fisiologia , Dobramento de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
5.
Am J Hum Genet ; 99(3): 770-776, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27588451

RESUMO

Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa.


Assuntos
Proteínas de Ciclo Celular/genética , Cílios/patologia , Distrofias de Cones e Bastonetes/complicações , Distrofias de Cones e Bastonetes/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Mutação/genética , Idoso , Alelos , Animais , Cadáver , Proteínas de Ciclo Celular/metabolismo , Estudos de Coortes , Distrofias de Cones e Bastonetes/patologia , Distrofias de Cones e Bastonetes/fisiopatologia , Exoma/genética , Olho/embriologia , Olho/metabolismo , Proteínas do Olho/metabolismo , Feminino , Fibroblastos/patologia , Grécia , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/fisiopatologia , Heterozigoto , Homozigoto , Humanos , Íntrons/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Ligação Proteica , RNA Mensageiro/análise , Suécia , Transcriptoma , Síndromes de Usher/patologia
6.
J Biol Chem ; 290(15): 9412-27, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25657004

RESUMO

Although α-synuclein (α-syn) phosphorylation has been considered as a hallmark of sporadic and familial Parkinson disease (PD), little is known about the effect of PD-linked mutations on α-syn phosphorylation. In this study, we investigated the effects of the A30P, E46K, and A53T PD-linked mutations on α-syn phosphorylation at residues Ser-87 and Ser-129. Although the A30P and A53T mutants slightly affected Ser(P)-129 levels compared with WT α-syn, the E46K mutation significantly enhanced Ser-129 phosphorylation in yeast and mammalian cell lines. This effect was not due to the E46K mutant being a better kinase substrate nor due to alterations in endogenous kinase levels, but was mostly linked with enhanced nuclear and endoplasmic reticulum accumulation. Importantly, lentivirus-mediated overexpression in mice also showed enhanced Ser-129 phosphorylation of the E46K mutant compared to WT α-syn, thus providing in vivo validation of our findings. Altogether, our findings suggest that the different PD-linked mutations may contribute to PD pathogenesis via different mechanisms.


Assuntos
Mutação , Saccharomyces cerevisiae/genética , Serina/genética , alfa-Sinucleína/genética , Animais , Western Blotting , Encéfalo/metabolismo , Caseína Quinase I/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HeLa , Hipocampo/metabolismo , Humanos , Cinética , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Doença de Parkinson/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Especificidade por Substrato , alfa-Sinucleína/metabolismo
7.
J Biol Chem ; 289(32): 21856-76, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24936070

RESUMO

Over the last two decades, the identification of missense mutations in the α-synuclein (α-Syn) gene SNCA in families with inherited Parkinson disease (PD) has reinforced the central role of α-Syn in PD pathogenesis. Recently, a new missense mutation (H50Q) in α-Syn was described in patients with a familial form of PD and dementia. Here we investigated the effects of this novel mutation on the biophysical properties of α-Syn and the consequences for its cellular function. We found that the H50Q mutation affected neither the structure of free or membrane-bound α-Syn monomer, its interaction with metals, nor its capacity to be phosphorylated in vitro. However, compared with the wild-type (WT) protein, the H50Q mutation accelerated α-Syn fibrillization in vitro. In cell-based models, H50Q mutation did not affect α-Syn subcellular localization or its ability to be phosphorylated by PLK2 and GRK6. Interestingly, H50Q increased α-Syn secretion from SHSY5Y cells into culture medium and induced more mitochondrial fragmentation in hippocampal neurons. Although the transient overexpression of WT or H50Q did not induce toxicity, both species induced significant cell death when added to the culture medium of hippocampal neurons. Strikingly, H50Q exhibited more toxicity, suggesting that the H50Q-related enhancement of α-Syn aggregation and secretion may play a role in the extracellular toxicity of this mutant. Together, our results provide novel insight into the mechanism by which this newly described PD-associated mutation may contribute to the pathogenesis of PD and related disorders.


Assuntos
Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , alfa-Sinucleína/química , alfa-Sinucleína/genética , Animais , Morte Celular/genética , Morte Celular/fisiologia , Linhagem Celular , Células Cultivadas , Humanos , Metabolismo dos Lipídeos , Metais/metabolismo , Camundongos , Proteínas Mutantes/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Fosforilação , Agregados Proteicos/genética , Agregação Patológica de Proteínas/genética , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/fisiologia
8.
Hum Mol Genet ; 23(17): 4491-509, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24728187

RESUMO

A novel mutation in the α-Synuclein (α-Syn) gene "G51D" was recently identified in two familial cases exhibiting features of Parkinson's disease (PD) and multiple system atrophy (MSA). In this study, we explored the impact of this novel mutation on the aggregation, cellular and biophysical properties of α-Syn, in an attempt to unravel how this mutant contributes to PD/MSA. Our results show that the G51D mutation significantly attenuates α-Syn aggregation in vitro. Moreover, it disrupts local helix formation in the presence of SDS, decreases binding to lipid vesicles C-terminal to the site of mutation and severely inhibits helical folding in the presence of acidic vesicles. When expressed in yeast, α-Syn(G51D) behaves similarly to α-Syn(A30P), as both exhibit impaired membrane association, form few inclusions and are non-toxic. In contrast, enhanced secreted and nuclear levels of the G51D mutant were observed in mammalian cells, as well as in primary neurons, where α-Syn(G51D) was enriched in the nuclear compartment, was hyper-phosphorylated at S129 and exacerbated α-Syn-induced mitochondrial fragmentation. Finally, post-mortem human brain tissues of α-Syn(G51D) cases were examined, and revealed only partial colocalization with nuclear membrane markers, probably due to post-mortem tissue delay and fixation. These findings suggest that the PD-linked mutations may cause neurodegeneration via different mechanisms, some of which may be independent of α-Syn aggregation.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Mutação/genética , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Soluções Tampão , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Doença de Parkinson/patologia , Fosforilação/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Dodecilsulfato de Sódio/farmacologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Lipossomas Unilamelares/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura
9.
J Biol Chem ; 287(19): 15345-64, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22315227

RESUMO

Since the discovery and isolation of α-synuclein (α-syn) from human brains, it has been widely accepted that it exists as an intrinsically disordered monomeric protein. Two recent studies suggested that α-syn produced in Escherichia coli or isolated from mammalian cells and red blood cells exists predominantly as a tetramer that is rich in α-helical structure (Bartels, T., Choi, J. G., and Selkoe, D. J. (2011) Nature 477, 107-110; Wang, W., Perovic, I., Chittuluru, J., Kaganovich, A., Nguyen, L. T. T., Liao, J., Auclair, J. R., Johnson, D., Landeru, A., Simorellis, A. K., Ju, S., Cookson, M. R., Asturias, F. J., Agar, J. N., Webb, B. N., Kang, C., Ringe, D., Petsko, G. A., Pochapsky, T. C., and Hoang, Q. Q. (2011) Proc. Natl. Acad. Sci. 108, 17797-17802). However, it remains unknown whether or not this putative tetramer is the main physiological form of α-syn in the brain. In this study, we investigated the oligomeric state of α-syn in mouse, rat, and human brains. To assess the conformational and oligomeric state of native α-syn in complex mixtures, we generated α-syn standards of known quaternary structure and conformational properties and compared the behavior of endogenously expressed α-syn to these standards using native and denaturing gel electrophoresis techniques, size-exclusion chromatography, and an oligomer-specific ELISA. Our findings demonstrate that both human and rodent α-syn expressed in the central nervous system exist predominantly as an unfolded monomer. Similar results were observed when human α-syn was expressed in mouse and rat brains as well as mammalian cell lines (HEK293, HeLa, and SH-SY5Y). Furthermore, we show that α-syn expressed in E. coli and purified under denaturing or nondenaturing conditions, whether as a free protein or as a fusion construct with GST, is monomeric and adopts a disordered conformation after GST removal. These results do not rule out the possibility that α-syn becomes structured upon interaction with other proteins and/or biological membranes.


Assuntos
Encéfalo/metabolismo , Eritrócitos/metabolismo , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Sistema Nervoso Central/metabolismo , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/química , alfa-Sinucleína/química , alfa-Sinucleína/genética
10.
J Biol Chem ; 285(4): 2807-22, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19889641

RESUMO

Phosphorylation of alpha-synuclein (alpha-syn) at Ser-129 is a hallmark of Parkinson disease and related synucleinopathies. However, the identity of the natural kinases and phosphatases responsible for regulating alpha-syn phosphorylation remain unknown. Here we demonstrate that three closely related members of the human Polo-like kinase (PLK) family (PLK1, PLK2, and PLK3) phosphorylate alpha-syn and beta-syn specifically at Ser-129 and Ser-118, respectively. Unlike other kinases reported to partially phosphorylate alpha-syn at Ser-129 in vitro, phosphorylation by PLK2 and PLK3 is quantitative (>95% conversion). Only PLK1 and PLK3 phosphorylate beta-syn at Ser-118, whereas no phosphorylation of gamma-syn was detected by any of the four PLKs (PLK1 to -4). PLK-mediated phosphorylation was greatly reduced in an isolated C-terminal fragment (residues 103-140) of alpha-syn, suggesting substrate recognition via the N-terminal repeats and/or the non-amyloid component domain of alpha-syn. PLKs specifically co-localized with phosphorylated Ser-129 (Ser(P)-129) alpha-syn in various subcellular compartments (cytoplasm, nucleus, and membranes) of mammalian cell lines and primary neurons as well as in alpha-syn transgenic mice, especially cortical brain areas involved in synaptic plasticity. Furthermore, we report that the levels of PLK2 are significantly increased in brains of Alzheimer disease and Lewy body disease patients. Taken together, these results provide biochemical and in vivo evidence of alpha-syn and beta-syn phosphorylation by specific PLKs. Our results suggest a need for further studies to elucidate the potential role of PLK-syn interactions in the normal biology of these proteins as well as their involvement in the pathogenesis of Parkinson disease and other synucleinopathies.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Neurônios/enzimologia , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , beta-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Proteínas de Filamentos Intermediários/genética , Rim/citologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neurônios/citologia , Ressonância Magnética Nuclear Biomolecular , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção , Proteínas Supressoras de Tumor , beta-Sinucleína/genética , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA