Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38444984

RESUMO

Indiscriminate use of pesticides in the public health and agriculture sectors has contributed to the development of resistance in malaria vectors following exposure to sub-lethal concentrations. To preserve the efficacy of vector control tools and prevent resistance from spreading, early resistance detection is urgently needed to inform management strategies. The introduction of new insecticides for controlling malaria vectors such as clothianidin and chlorfenapyr requires research to identify early markers of resistance which could be used in routine surveillance. This study investigated phenotypic resistance of Anopheles gambiae (sensu stricto) Muleba-Kis strain using both WHO bottle and tube assays following chlorfenapyr, clothianidin, and alpha-cypermethrin selection against larvae and adults under laboratory conditions. High mortality rates were recorded for both chlorfenapyr-selected mosquitoes that were consistently maintained for 10 generations (24-h mortality of 92-100% and 72-h mortality of 98-100% for selected larvae; and 24-h mortality of 95-100% and 72-h mortality of 98-100% for selected adults). Selection with clothianidin at larval and adult stages showed a wide range of mortality (18-91%) compared to unselected progeny where mortality was approximately 99%. On the contrary, mosquitoes selected with alpha-cypermethrin from the adult selection maintained low mortality (28% at Generation 2 and 23% at Generation 4) against discrimination concentration compared to unselected progeny where average mortality was 51%. The observed resistance in the clothianidin-selected mosquitoes needs further investigation to determine the underlying resistance mechanism against this insecticide class. Additionally, further investigation is recommended to develop molecular markers for observed clothianidin phenotypic resistance.

2.
Trop Med Infect Dis ; 8(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624317

RESUMO

Long-lasting insecticidal nets (LLINs) are prone to reduction in insecticide content and physical strength due to repeated washes and usage. The significant loss to these features jeopardizes their protection against bites from malaria vectors. Insecticide washout is attributed to routine use, friction, and washing, while fabric damage is associated with routine use in households. To maintain coverage and cost-effectiveness, nets should maintain optimal bio-efficacy and physical strength for at least 3 years after distribution. In this study, the bio-efficacy and fabric strength of Olyset plus (OP) LLINs and Interceptor G2 (IG2), that were used for 3 years, were assessed in comparison to untreated and new unwashed counterparts. Both IG2 and OP LLINs (unused, laboratory-washed, and 36 months used) were able to induce significant mortality and blood feeding inhibition (BFI) to mosquitoes compared to the untreated nets. Significantly higher mortality was induced by unused IG2 LLIN and OP LLIN compared to their 36-month-old counterparts against both pyrethroid resistant and susceptible Anopheles gambiae sensu strito. The physical strength of the IG2 LLIN was higher than that of the Olyset Plus LLIN with a decreasing trend from unwashed, laboratory-washed to community usage (36 months old). Malaria control programs should consider bio-efficacy and physical integrity prior to an LLINs' procurement and replacement plan.

3.
Sci Rep ; 12(1): 22359, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572746

RESUMO

Novel insecticides are urgently needed to control insecticide-resistant populations of Anopheles malaria vectors. Broflanilide acts as a non-competitive antagonist of the gamma-aminobutyric acid receptor and has shown prolonged effectiveness as an indoor residual spraying product (VECTRON T500) in experimental hut trials against pyrethroid-resistant vector populations. This multi-centre study expanded upon initial discriminating concentration testing of broflanilide, using six Anopheles insectary colonies (An. gambiae Kisumu KCMUCo, An. gambiae Kisumu NIMR, An. arabiensis KGB, An. arabiensis SENN, An. coluzzii N'Gousso and An. stephensi SK), representing major malaria vector species, to facilitate prospective susceptibility monitoring of this new insecticide; and investigated the potential for cross-resistance to broflanilide via the A296S mutation associated with dieldrin resistance (rdl). Across all vector species tested, the discriminating concentration for broflanilide ranged between LC99 × 2 = 1.126-54.00 µg/ml or LC95 × 3 = 0.7437-17.82 µg/ml. Lower concentrations of broflanilide were required to induce complete mortality of An. arabiensis SENN (dieldrin-resistant), compared to its susceptible counterpart, An. arabiensis KGB, and there was no association between the presence of the rdl mechanism of resistance and survival in broflanilide bioassays, demonstrating a lack of cross-resistance to broflanilide. Study findings provide a benchmark for broflanilide susceptibility monitoring as part of ongoing VECTRON T500 community trials in Tanzania and Benin.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Dieldrin/farmacologia , Estudos Prospectivos , Saúde Pública , Resistência a Inseticidas/genética , Mosquitos Vetores , Malária/prevenção & controle , Piretrinas/farmacologia , Controle de Mosquitos
4.
Parasit Vectors ; 15(1): 326, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109765

RESUMO

BACKGROUND: Optimising insecticide use and managing insecticide resistance are important to sustain gains against malaria using long-lasting insecticidal nets (LLINs). Restricting insecticides to where mosquitoes are most likely to make multiple contacts could reduce the quantity of insecticide needed to treat the nets. Previous studies have shown that nets partially treated with a pyrethroid insecticide had equivalent mortality compared to a fully treated net. This study compared the efficacy of: (i) whole Interceptor® G2 nets (IG2; a dual-active LLIN containing alpha-cypermethrin and chlorfenapyr), (ii) nets with roof panels made of IG2 netting, (iii) nets with side panels made of IG2 netting and (iv) whole untreated nets as test nets. METHODS: The study was conducted in cow-baited experimental huts, Moshi Tanzania, using a four-arm Latin square design. Test nets had 30 holes cut in panels to simulate a typical net after 2-3 year use. The trial data were analysed using generalized linear models with mortality, blood-feeding, exophily and deterrence against wild free-flying Anopheles arabiensis as outcomes and test nets as predictors. RESULTS: Mortality was significantly higher in the nets with roof IG2 [27%, P = 0.001, odds ratio (OR) = 51.0, 95% CI = 4.8-546.2), side IG2 (44%, P < 0.001, OR = 137.6, 95% CI = 12.2-1553.2] and whole IG2 (53%, P < 0.001, OR = 223.0, 95% CI = 19.07-2606.0) nettings than the untreated (1%) nets. Mortality was also significantly higher in the whole IG2 net compared to the net with roof IG2 netting (P = 0.009, OR = 4.4, 95% CI = 1.4-13.3). Blood feeding was 22% in untreated, 10% in roof IG2, 14% in side IG2 and 19% in whole IG2 nets. Exiting was 92% in untreated, 89% in roof IG2, 97% in side IG2 and 94% whole IG2 nets. CONCLUSION: The results show that although the roof-treated IG2 net induced greater mortality compared to untreated nets, its efficacy was reduced compared to whole IG2 nets. Therefore, there was no benefit to be gained from restricting dual-active ingredient IG2 netting to the roof of nets.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Piretrinas , Animais , Bovinos , Feminino , Inseticidas/farmacologia , Macrolídeos , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Tanzânia
5.
BMC Infect Dis ; 22(1): 171, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189830

RESUMO

BACKGROUND: Indoor residual spraying (IRS) is a major method of malaria vector control across sub-Saharan Africa. Effective control is being undermined by the rapid spread of insecticide resistance. There is major investment in development of new insecticides for IRS that possess novel modes of action, long residual activity, low mammalian toxicity and minimal cross-resistance. VECTRON™ T500, a new IRS product containing the active ingredient broflanilide as a 50% wettable powder (WP), has been shown to be efficacious against pyrethroid susceptible and resistant vector species on mud and concrete substrates in experimental hut (Phase II) trials. METHODS: A two-arm non-inferiority cluster randomized controlled trial (Phase III) will be undertaken in Muheza District, Tanga Region, Tanzania. VECTRON™ T500 will be compared to the IRS product Fludora® Fusion (clothianidin 50% WP + deltamethrin 6.25% WP). The predominant malaria vectors in the study area are pyrethroid-resistant Anopheles gambiae s.s., An. arabiensis and An. funestus s.s. Sixteen village clusters will be pair-matched on baseline vector densities and allocated to reference and intervention arms. Consenting households in the intervention arm will be sprayed with VECTRON™ T500 and those in the reference arm will be sprayed with Fludora® Fusion. Each month, CDC light traps will collect mosquitoes to estimate changes in vector density, indoor biting, sporozoite and entomological inoculation rates (EIR). Susceptibility to IRS active ingredients will be assessed using World Health Organisation (WHO) bottle bioassays. Target site and metabolic resistance mechanisms will be characterised among Anopheles field populations from both trial arms. Residual efficacy of both IRS products will be monitored for 12 months post intervention. Questionnaire and focus group discussions will explore factors that influence adherence, adverse effects and benefits of IRS. DISCUSSION: This protocol describes a large-scale non-inferiority evaluation of a novel IRS product to reduce the density and EIR of pyrethroid-resistant Anopheles vectors. If VECTRON™ T500 proves non-inferior to Fludora® Fusion, it will be considered as an additional vector control product for malaria prevention and insecticide resistance management. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05150808, registered on 26 November 2021. Retrospectively registered.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Benzamidas , Fluorocarbonos , Humanos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores , Piretrinas/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Tanzânia
6.
Acta Trop ; 223: 106092, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34389328

RESUMO

Monitoring the effectiveness of tsetse fly control interventions that aim to reduce transmission of African trypanosomiasis requires highly efficient sampling tools that can catch flies at low densities. The sticky small target (StS-target) has previously been shown to be more effective in sampling Glossina fuscipes fuscipes compared to the biconical trap. However, its efficiency in terms of the proportion of flies it catches out of those that visit it has not been reported. Furthermore, there are no reports on whether tsetse samples caught using the StS-target can be used for subsequent processes such as molecular tests. In this study, we evaluated the efficiency of the biconical trap and targets for sampling G. f. fuscipes. All targets were tiny (0.25 × 0.50 m) but varied in their capture system. We used targets with sticky surface (StS-targets) and those with an electrified surface (ES-targets). We also assessed the suitability of flies caught on the StS-target for molecular tests by amplifying DNA of bacterial communities. Randomized block design experiments were undertaken in Mbita area and Manga Island on Lake Victoria of western Kenya. Fly catches of each sampling tool were compared to those of the sampling tool flanked by electric (E) nets and analyzed using a negative binomial regression. The total catch for each sampling tool alone was divided by the total catch of the sampling tool flanked by two E-nets to obtain its efficiency expressed as a percentage. A proportion of flies caught on the StS-target was preserved for molecular tests. Overall, the efficiencies of the biconical trap, ES-target and StS-target were 7.7%, 13.3% and 27.0%, respectively. A higher proportion of females (69 to 79%) than males approached all the sampling tools, but the trap efficiency was greater for male G. f. fuscipes than females. Furthermore, sequencing the 16S rRNA gene from fly samples caught on the StS-target revealed the presence of Spiroplasma. Our results indicate that the SS-target is the most efficient trap to monitor G. f. fuscipes population during interventions, with the biconical trap being the least efficient, and samples collected from StS-targets are suitable for molecular studies.


Assuntos
Moscas Tsé-Tsé , Animais , Feminino , Controle de Insetos , Quênia , Masculino , RNA Ribossômico 16S , Tripanossomíase Africana
7.
PLoS Negl Trop Dis ; 15(7): e0009620, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34280199

RESUMO

BACKGROUND: Black screen fly round (BFR) is a mobile sampling method for Glossina morsitans. This technique relies on the ability of operator(s) to capture flies landing on the screen with hand nets. In this study, we aimed to evaluate a vehicle-mounted sticky panel trap (VST) that is independent of the operator's ability to capture flies against BFR, for effective and rapid sampling of G. m. morsitans Westwood and G. m. centralis Machado. We also determined the influence of the VST colour (all-blue, all-black or 1:1 blue-black), orientation and presence of odour attractants on tsetse catch. METHODOLOGY/PRINCIPAL FINDINGS: Using randomised block design experiments conducted in Zambia, we compared and modelled the number of tsetse flies caught in the treatment arms using negative binomial regression. There were no significant differences in the catch indices of the three colour designs and for in-line or transversely oriented panels for both subspecies (P > 0.05). When baited with butanone and 1-octen-3-ol, VST caught 1.38 (1.11-1.72; P < 0.01) times more G. m. centralis flies than the un-baited trap. Attractants did not significantly increase the VST catch index for G. m. morsitans (P > 0.05). Overall, the VST caught 2.42 (1.91-3.10; P < 0.001) and 2.60 (1.50-3.21; P < 0.001) times more G. m. centralis and G. m. morsitans respectively, than the BFR. The VST and BFR took 10 and 35 min respectively to cover a 1 km transect. CONCLUSION/SIGNIFICANCE: The VST is several times more effective for sampling G. m. morsitans and G. m. centralis than the BFR and we recommend its use as an alternative sampling tool.


Assuntos
Entomologia/instrumentação , Desenho de Equipamento , Moscas Tsé-Tsé/fisiologia , Animais , Entomologia/métodos , Feminino , Masculino , Veículos Automotores , Zâmbia
8.
Acta Trop ; 204: 105333, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31926912

RESUMO

INTRODUCTION: A variety of techniques have been used to control tsetse with varying degrees of success. In a study on the population structure of Glossina fuscipes fuscipes that recovered after a previous vector control trial on two Kenyan islands, it was reported that the average fly size on the intervention islands was significantly smaller than on the none intervention islands and also compared to the size before the intervention. The conclusion was that vector control using tiny targets exerted size selection pressure on the population. The study recommended for further studies and suggested that this phenomenon could be among the reasons why targets used as a sole control method have rare reports of successful elimination of tsetse populations. Therefore, in this paper we report on a study of body size of tsetse flies caught in epsilon traps (as a stationary device) and black screen fly rounds (as a mobile trapping device). MATERIALS AND METHODS: The study was carried out in eastern Zambia to test the hypothesis that the body size (measured as wing length) of G. m. morsitans males or females, captured by epsilon traps and fly rounds is the same. RESULTS: A total of 1442 (489 females and 953 males) wing length measurements of G. m. morsitans were used in the analysis. It was established that tsetse flies caught by epsilon traps are on average larger than those caught by fly rounds. The likelihood of a large female or male fly being caught by traps, relative to a small one, significantly increased by 5.088 times (95% CI: 3.138-8.429) and by 2.563 times (95% CI: 1.584-4.148), respectively, p < 0.0001, compared with being caught by fly rounds. The hypothesis was rejected. CONCLUSION: This study showed that epsilon traps capture significantly larger G. m. morsitans than fly rounds do. Therefore, further research is recommended to verify i) whether the predilection of traps to capture larger flies has an effect on the process of tsetse elimination when targets are used e.g. targets may take longer to reach elimination than if the predilection was not there, ii) whether different results can be obtained on ecogeographic distribution of different sizes of the species if fly rounds are used for sampling instead of epsilon traps. The results from such studies could influence the strategies used in future control operations.


Assuntos
Controle de Insetos/métodos , Moscas Tsé-Tsé/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Tamanho Corporal , Feminino , Masculino , Simuliidae
9.
PLoS Negl Trop Dis ; 13(7): e0007510, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31276492

RESUMO

BACKGROUND: A blend of compounds (pentanoic acid, guaiacol, δ-octalactone and geranylacetone) identified in waterbuck (Kobus defassa) body odour referred to as waterbuck repellent compounds (WRC) and a synthetic repellent 4-methylguaiacol have previously been shown to repel tsetse flies from the morsitans group. However, these repellents have not been evaluated on palpalis group tsetse flies. In this study, we evaluated the effect of these repellents on catches of Glossina fuscipes fuscipes (major vector of human sleeping sickness) in biconical traps and on sticky small targets which are visually attractive to palpalis group flies. The attractive devices were baited with different doses and blends of the repellent compounds. We also assessed the effect of removal of individual constituents in the synthetic blend of WRC on catches of G. f. fuscipes. METHODOLOGY/PRINCIPAL FINDINGS: The study was conducted in western Kenya on four islands of Lake Victoria namely Big Chamaunga, Small Chamaunga, Manga and Rusinga. The tsetse fly catches from the treatments were modeled using a negative binomial regression to determine their effect on catches. In the presence of WRC and 4-methylguaiacol (released at ≈2 mg/h and ≈1.4 mg/h respectively), catches of G. f. fuscipes were significantly reduced by 33% (P<0.001) and 22% (P<0.001) respectively in biconical traps relative to control. On sticky small targets the reduction in fly catches were approximately 30% (P<0.001) for both 4-methylguiacol and WRC. In subtractive assays, only removal of geranylacetone from WRC significantly increased catches (by 1.8 times; P <0.001) compared to the complete blend of WRC. CONCLUSIONS/SIGNIFICANCE: We conclude that WRC and 4-methylguaiacol reduce catches of G. f. fuscipes at stationary visually attractive traps and suggest that they may serve as broad spectrum repellents for Glossina species. We recommend further studies to investigate the effects of these compounds on reduction of G. f. fuscipes attracted to human hosts as this may lead to development of new strategies of reducing the prevalence and incidence of sleeping sickness.


Assuntos
Búfalos/fisiologia , Cresóis/química , Controle de Insetos/instrumentação , Repelentes de Insetos/química , Odorantes/análise , Moscas Tsé-Tsé/fisiologia , Animais , Búfalos/parasitologia , Feminino , Quênia , Masculino
10.
Parasit Vectors ; 11(1): 268, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695261

RESUMO

BACKGROUND: Small targets comprising panels of blue and insecticide-treated black netting material each 0.25 × 0.25 m have been shown to attract and kill Glossina fuscipes fuscipes Newstead, 1910 (Diptera: Glossinidae) thereby reducing its population density by over 90% in field trials. However, their attractive ability has not been fully exploited for sampling purposes. Therefore, in this study we assessed the effectiveness of using sticky small targets as sampling tools for G. f. fuscipes in western Kenya. We also determined the influence of colour on the landing response of female and male flies on sticky small targets. METHODS: Using a series of randomised block experiments, the numbers of tsetse flies caught with sticky small targets were compared with those caught with biconical traps. A negative binomial regression was used to model fly catches. Odds ratios as measures of association between the landing response on the blue or black panel of the sticky small target and the sex of flies were obtained from a multiple logistic regression. RESULTS: The results showed that sticky small targets caught 13.5 and 3.6 times more female and male tsetse flies than biconical traps (Z = 9.551, P < 0.0001 and Z = 5.978, P < 0.0001, respectively). Females had a 1.7 times likelihood of landing on the black panel than males (Z = 2.25, P = 0.025). CONCLUSION: This study suggests that sticky small targets are an effective sampling tool for G. f. fuscipes. Therefore, we recommend the use of sticky small targets as an alternative to biconical traps for observational and experimental investigations of G. f. fuscipes.


Assuntos
Entomologia/métodos , Manejo de Espécimes/métodos , Moscas Tsé-Tsé/fisiologia , Adesivos , Animais , Cor , Feminino , Quênia , Masculino
11.
Acta Trop ; 179: 1-9, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29248414

RESUMO

Displacement rates of tsetse affect performance of targets during vector control. Fly size, one of the indicators of population structure usually obtained from wing measurement, is among the determinants of displacement rates. Although recovery of tsetse in previous intervention areas has been widely reported, the population structure of tsetse that recover is rarely evaluated despite being associated with displacements rates. Previously, intervention trials had reduced tsetse densities by over 90% from >3 flies/trap/day to <1fly/trap/day on Big Chamaunga and Manga islands of Lake Victoria in western Kenya. In this study, we assessed the recovery in densities of Glossina fuscipes fuscipes on the two islands and evaluated the effects vector control might have on the population structure. A before and after intervention study was undertaken on four islands of Lake Victoria in western Kenya; Small and Big Chamaunga, Manga and Rusinga Islands, two of which tsetse control intervention had previously been undertaken. Three years after intervention average G. f. fuscipes catches in biconical traps were estimated on each island. Wing centroid size (CS) (a measurement of fly size) and shape, indicators of the population structure of flies from the four islands were compared using geometric morphometric analyses. CS and shape of available female but not male tsetse wings obtained before the intervention trial on Big and Small Chamaunga islands were compared with those from the same islands after the intervention trial. G. f. fuscipes apparent density on the previous intervention islands were>9 flies/trap/day. Irrespective of sex, wing shape did not isolate tsetse based on their islands of origin. The fly size from Big and Small Chamaunga did not differ significantly before intervention trials (P = 0.728). However, three years after the intervention flies from Big Chamaunga were significantly smaller than those from Small Chamaunga (P < 0.003). Further, there was an increase in the divergence of wing morphology between flies collected from Big Chamaunga and those from Small Chamaunga after tsetse control. In conclusion, even though populations are not isolated, vector control could influence the population structure of tsetse by exerting size and wing morphology differential selection pressures. Therefore, we recommend further studies to understand the mechanism behind this as it may guide future vector control strategies.


Assuntos
Controle de Insetos/estatística & dados numéricos , Insetos Vetores/crescimento & desenvolvimento , Moscas Tsé-Tsé/crescimento & desenvolvimento , Animais , Feminino , Quênia , Lagos , Masculino , Asas de Animais/crescimento & desenvolvimento
12.
Parasit Vectors ; 8: 638, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26669306

RESUMO

BACKGROUND: The measure of anaemia status using packed cell volume (PCV) can be a reliable indicator of African trypanosomosis (AT) in the absence of other anaemia-causing conditions. However, studies that have estimated prevalence of anaemia in cattle from AT endemic areas have rarely reported the prevalence of the disease in the anaemic cattle. Therefore we investigated the prevalence of AT in anaemic cattle at sites that had recently reported the disease in Itezhi tezhi district of central Zambia. METHODS: During a survey, blood samples were collected from 564 randomly selected cattle for anaemia determination from seven crush pens (Mutenda, Kapulwe, Banachoongo, Itumbi, Iyanda, New Ngoma and Shinampamba). At a PCV- value cut off of 26 %, all samples positive for anaemia were subjected to both parasitological examination on thick and thin blood smears and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for detection of trypanosome DNA. Fisher's exact test and a mixed effect logistic regression analyses were used to determine and measures associations, respectively. RESULTS: Of 564 cattle screened, 58 (10.3 %; 95 % CI: 7.8-12.8 %) had anaemia. PCR-RFLP results showed that 17 (29.3 %; 95 % CI; 17.2-41.4 %) anaemic cattle were positive for pathogenic trypanosomes compared to 1 (1.7 %; 95 % CI: 0.0-5.2 %) on parasitological examination using thick smears. The infections were caused by Trypanosoma congolense and Trypanosoma vivax. Fisher's exact test showed a strong association between PCV and pathogenic trypanosome infection (P = 0.004). A mixed effect multivariate logistic regression showed that a one unit increase in PCV reduced the likelihood of detecting AT with PCR-RFLP by 24.7 % (95 % CI: 4.6-40.6 %; P = 0.019) in anaemic cattle, taking into account their age and sex, with random effects for crush pen. CONCLUSION: These results suggest that T. congolense and T. vivax could be important causes of anaemia in cattle reared in AT endemic areas of Itezhi tezhi in Central Zambia. This also suggests that even though pathogenic trypanosomal infection was strongly associated with PCV, it could only account for up to 41 % of the anaemia in cattle. Therefore further investigation to ascertain other factors responsible for anaemia in AT endemic areas of Itezhi tezhi in Central Zambia is needed.


Assuntos
Anemia/veterinária , Doenças dos Bovinos/epidemiologia , Trypanosoma congolense/isolamento & purificação , Trypanosoma vivax/isolamento & purificação , Tripanossomíase Africana/veterinária , Anemia/etiologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , DNA de Protozoário/genética , Microscopia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prevalência , Trypanosoma congolense/classificação , Trypanosoma vivax/classificação , Tripanossomíase Africana/complicações , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Zâmbia/epidemiologia
13.
Vet Parasitol ; 211(1-2): 93-8, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-25983231

RESUMO

Tsetse flies (Diptera: Glossinidae) are considered primary cyclical vectors that transmit pathogenic trypanosomes in Africa. They harbour a variety of microbes including Wolbachia, Sodalis and the salivary gland hypertrophy virus (SGHV) which are all vertically transmitted. Knowledge on tsetse microbiome and their interactions may identify novel strategies for tsetse fly and trypanosomiasis control. Area-wide application of such strategies requires an understanding of the natural microbiome frequency in the different species and subspecies of Glossina in their geographical populations. Consequently, this study determined the prevalence of Sodalis, Wolbachia, SGHV and trypanosome infections in Glossina morsitanscentralis from two sites of Western Zambia. We also explored possible associations of the microbes with trypanosome infections. Male G. morsitanscentralis samples were collected from two sites (Lyoni and Lusinina) in Western Zambia. The age structure of the flies at each site was determined using the wing fray method. DNA was extracted from the samples and analyzed for Wolbachia, Sodalis, SGHV and trypanosome presence using PCR. Associations and measures of associations between trypanosome infection and microbes in the fly were determined. The flies from the two locations (Lusinina, n=45 and Lyoni, n=24) had a similar age structure with their median fray category not being significantly different (p=0.698). The overall prevalence of Wolbachia was 72.5% (95% CI: 61.6-83.3%), Sodalis was 15.9% (95% CI: 7.1-24.8%), SGHV was 31.9% (95% CI: 20.6-43.2%) and Trypanosoma species was 23.2% (95% CI: 13-33.4%). The prevalence of Wolbachia was significantly higher in Lusinina than Lyoni (p=0.000). However this was not the case for Sodalis, SGHV and Trypanosoma species. Despite the low number of flies that were positive for both trypanosome and Sodalis (6; 8.7%), a statistically significant association (p=0.013; AOR 6.2; 95% CI: 1.5-25.8) was observed in G. morsitanscentralis. The study showed that the prevalence of microbiota may vary within the same species of the tsetse depending on the geographical location as was the case of Wolbachia. Further it showed that infection with Sodalis could affect vector competence. The study concludes that Sodalis could be an ideal candidate for symbiont-mediated trypanosomiasis control interventions in G. morsitanscentralis.


Assuntos
Enterobacteriaceae/isolamento & purificação , Microbiota , Trypanosoma/fisiologia , Tripanossomíase/prevenção & controle , Moscas Tsé-Tsé/microbiologia , Wolbachia/isolamento & purificação , Animais , Enterobacteriaceae/genética , Feminino , Masculino , Simbiose , Moscas Tsé-Tsé/parasitologia , Wolbachia/genética , Zâmbia/epidemiologia
14.
Vet Parasitol ; 209(1-2): 43-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25740569

RESUMO

Trypanocides will continue to play an important role in the control of tsetse fly transmitted trypanosomosis now and in the near future. The drugs are mostly administered by farmers without any veterinary supervision leading to misuse and under dosing of medication, and these could be factors that promote trypanocidal drug resistance (TDR) development. In order to delay or prevent TDR, the Food and Agriculture Organization (FAO) recommended guidelines on trypanocide use. It is not known if these recommended guidelines are adhered to in Itezhi tezhi district of Zambia. A survey was undertaken to examine how socio-economic and environmental factors were associated with adherence to the recommended guidelines on trypanocide use in Itezhi tezhi, Central Zambia. Ninety farmers who use trypanocides were interviewed using a questionnaire to collect their socio-economic characteristics (age, education in years, cattle herd size, competence on trypanocide use and their access to extension on trypanocide use) and trypanocide usage practices while crush pens which they use were stratified according to location, whether in the Game Management Area (GMA) (Mutenda, Itumbi, Kapulwe and Banachoongo) or non-GMA (Iyanda, New Ngoma and Shinampamba) as an environmental factor. Associations and measures of associations to adherence of FAO guidelines were determined. The results showed that 25.6% of the farmers adhered to guidelines by FAO on trypanocide use and that none of the socio-economic factors under investigation were significantly associated with it. Further the farmers that used crush pens that were in the GMA had an 80% reduction in the likelihood of adhering to the FAO guidelines on trypanocide use than those that used crush pens in the non-GMA (AOR 0.20, 95% CI: 0.05-0.81, P=0.02). There was low adherence to the recommended FAO guidelines on trypanocide use and it was associated with the location of the crush pen whether in the GMA or not, as an environmental factor. With farmers in the GMA less likely to adhere to FAO guidelines than those in the non-GMA, we recommend an integrated approach of measures to control trypanosomosis in the GMA of Itezhi tezhi to lessen overuse of trypanocides by the farmers.


Assuntos
Doenças dos Bovinos/parasitologia , Tripanossomicidas/administração & dosagem , Tripanossomicidas/uso terapêutico , Tripanossomíase/veterinária , Adolescente , Adulto , Animais , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Resistência a Medicamentos , Uso de Medicamentos , Fazendeiros , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Tripanossomíase/tratamento farmacológico , Adulto Jovem , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA