Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38878207

RESUMO

STUDY OBJECTIVES: TLD-1 is a novel pegylated liposomal doxorubicin (PLD) formulation aiming to optimise the PLD efficacy-toxicity ratio. We aimed to characterise TLD-1's population pharmacokinetics using non-compartmental analysis and nonlinear mixed-effects modelling. METHODS: The PK of TLD-1 was analysed by performing a non-compartmental analysis of longitudinal doxorubicin plasma concentration measurements obtained from a clinical trial in 30 patients with advanced solid tumours across a 4.5-fold dose range. Furthermore, a joint parent-metabolite PK model of doxorubicinentrapped, doxorubicinfree, and metabolite doxorubicinol was developed. Interindividual and interoccasion variability around the typical PK parameters and potential covariates to explain parts of this variability were explored. RESULTS: Medians  ± standard deviations of dose-normalised doxorubicinentrapped+free Cmax and AUC0-∞ were 0.342 ± 0.134 mg/L and 40.1 ± 18.9 mg·h/L, respectively. The median half-life (95 h) was 23.5 h longer than the half-life of currently marketed PLD. The novel joint parent-metabolite model comprised a one-compartment model with linear release (doxorubicinentrapped), a two-compartment model with linear elimination (doxorubicinfree), and a one-compartment model with linear elimination for doxorubicinol. Body surface area on the volumes of distribution for free doxorubicin was the only significant covariate. CONCLUSION: The population PK of TLD-1, including its release and main metabolite, were successfully characterised using non-compartmental and compartmental analyses. Based on its long half-life, TLD-1 presents a promising candidate for further clinical development. The PK characteristics form the basis to investigate TLD-1 exposure-response (i.e., clinical efficacy) and exposure-toxicity relationships in the future. Once such relationships have been established, the developed population PK model can be further used in model-informed precision dosing strategies. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov-NCT03387917-January 2, 2018.

2.
Clin Pharmacol Ther ; 116(3): 690-702, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38494911

RESUMO

Tamoxifen is widely used in patients with hormone receptor-positive breast cancer. The polymorphic enzyme CYP2D6 is primarily responsible for metabolic activation of tamoxifen, resulting in substantial interindividual variability of plasma concentrations of its most important metabolite, Z-endoxifen. The Z-endoxifen concentration thresholds below which tamoxifen treatment is less efficacious have been proposed but not validated, and prospective trials of individualized tamoxifen treatment to achieve Z-endoxifen concentration thresholds are considered infeasible. Therefore, we aim to validate the association between Z-endoxifen concentration and tamoxifen treatment outcomes, and identify a Z-endoxifen concentration threshold of tamoxifen efficacy, using pharmacometric modeling and simulation. As a first step, the CYP2D6 Endoxifen Percentage Activity Model (CEPAM) cohort was created by pooling data from 28 clinical studies (> 7,000 patients) with measured endoxifen plasma concentrations. After cleaning, data from 6,083 patients were used to develop a nonlinear mixed-effect (NLME) model for tamoxifen and Z-endoxifen pharmacokinetics that includes a conversion factor to allow inclusion of studies that measured total endoxifen but not Z-endoxifen. The final parent-metabolite NLME model confirmed the primary role of CYP2D6, and contributions from body weight, CYP2C9 phenotype, and co-medication with CYP2D6 inhibitors, on Z-endoxifen pharmacokinetics. Future work will use the model to simulate Z-endoxifen concentrations in patients receiving single agent tamoxifen treatment within large prospective clinical trials with long-term survival to identify the Z-endoxifen concentration threshold below which tamoxifen is less efficacious. Identification of this concentration threshold would allow personalized tamoxifen treatment to improve outcomes in patients with hormone receptor-positive breast cancer.


Assuntos
Antineoplásicos Hormonais , Neoplasias da Mama , Citocromo P-450 CYP2D6 , Dinâmica não Linear , Tamoxifeno , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacocinética , Tamoxifeno/sangue , Tamoxifeno/uso terapêutico , Humanos , Feminino , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/genética , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos Hormonais/farmacocinética , Antineoplásicos Hormonais/uso terapêutico , Antineoplásicos Hormonais/sangue , Modelos Biológicos , Pessoa de Meia-Idade , Estudos de Coortes , Resultado do Tratamento , Simulação por Computador , Idoso
3.
Eur J Cancer ; 201: 113588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377773

RESUMO

BACKGROUND: TLD-1 is a novel liposomal doxorubicin that compared favorably to conventional doxorubicin liposomal formulations in preclinical models. This phase I first-in-human study aimed to define the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D), safety and preliminary activity of TLD-1 in patients with advanced solid tumors. PATIENTS AND METHODS: We recruited patients with advanced solid tumors who failed standard therapy and received up to 3 prior lines of palliative systemic chemotherapy. TLD-1 was administered intravenously every 3 weeks up to a maximum of 9 cycles (6 for patients with prior anthracyclines) from a starting dose of 10 mg/m2, according to an accelerated titration design followed by a modified continual reassessment method. RESULTS: 30 patients were enrolled between November 2018 and May 2021. No dose-limiting toxicities (DLT) were observed. Maximum administered dose of TLD-1 was 45 mg/m2, RP2D was defined at 40 mg/m2. Most frequent treatment-related adverse events (TRAE) of any grade included palmar-plantar erythrodysesthesia (PPE) (50% of patients), oral mucositis (50%), fatigue (30%) and skin rash (26.7%). Most common G3 TRAE included PPE in 4 patients (13.3%) and oral mucositis in 2 (6.7%). Overall objective response rate was 10% in the whole population and 23.1% among 13 patients with breast cancer; median time-to-treatment failure was 2.7 months. TLD-1 exhibit linear pharmacokinetics, with a median terminal half-life of 95 h. CONCLUSIONS: The new liposomal doxorubicin formulation TLD-1 showed a favourable safety profile and antitumor activity, particularly in breast cancer. RP2D was defined at 40 mg/m2 administered every 3 weeks. (NCT03387917).


Assuntos
Neoplasias da Mama , Doxorrubicina/análogos & derivados , Neoplasias , Estomatite , Humanos , Feminino , Neoplasias/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Polietilenoglicóis , Estomatite/etiologia , Dose Máxima Tolerável , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA