Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
CNS Drugs ; 38(2): 77-91, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353876

RESUMO

Chronic pain complicates many diseases and is notoriously difficult to treat. In search of new therapeutic targets, pannexin-1 (Panx1) channels have sparked intense interest as a key mechanism involved in a variety of chronic pain conditions. Panx1 channels are transmembrane proteins that release ions and small molecules, such as adenosine triphosphate (ATP). They are expressed along important nodes of the pain pathway, modulating activity of diverse cell types implicated in the development and progression of chronic pain caused by injury or pathology. This review highlights advances that have unlocked the core structure and machinery controlling Panx1 function with a focus on understanding and treating chronic pain.


Assuntos
Dor Crônica , Conexinas , Humanos , Conexinas/metabolismo , Dor Crônica/tratamento farmacológico
2.
Eur J Neurosci ; 58(7): 3618-3629, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723853

RESUMO

Damage to the hippocampus produces profound retrograde amnesia, but odour and object discrimination memories can be spared in the retrograde direction. Prior lesion studies testing retrograde amnesia for object/odour discriminations are problematic due to sparing of large parts of the hippocampus, which may support memory recall, and/or the presence of uncontrolled, distinctive odours that may support object discrimination. To address these issues, we used a simple object discrimination test to assess memory in male rats. Two visually distinct objects, paired with distinct odour cues, were presented. One object was associated with a reward. Following training, neurotoxic hippocampal lesions were made using N-methyl-D-aspartate (NMDA). The rats were then tested on the preoperatively learned object discrimination problem, with and without the availability of odour or visual cues during testing. The rats were also postoperatively trained on a new object discrimination problem. Lesion sizes ranged from 67% to 97% of the hippocampus (average of 87%). On the preoperatively learned discrimination problem, the rats with hippocampal lesions showed preserved object discrimination memory when tested in the dark (i.e., without visual cues) but not when the explicit odour cues were removed from the objects. Hippocampal lesions increased the number of trials required to reach criterion but did not prevent rats from solving the postoperatively learned discrimination problem. Our results support the idea that long-term memories for odours, unlike recall of visual properties of objects, do not depend on the hippocampus in rats, consistent with previous observations that hippocampal damage does not cause retrograde amnesia for odour memories.

3.
Brain ; 146(12): 4903-4915, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37551444

RESUMO

Disinhibition during early stages of Alzheimer's disease is postulated to cause network dysfunction and hyperexcitability leading to cognitive deficits. However, the underlying molecular mechanism remains unknown. Here we show that, in mouse lines carrying Alzheimer's disease-related mutations, a loss of neuronal membrane potassium-chloride cotransporter KCC2, responsible for maintaining the robustness of GABAA-mediated inhibition, occurs pre-symptomatically in the hippocampus and prefrontal cortex. KCC2 downregulation was inversely correlated with the age-dependent increase in amyloid-ß 42 (Aß42). Acute administration of Aß42 caused a downregulation of membrane KCC2. Loss of KCC2 resulted in impaired chloride homeostasis. Preventing the decrease in KCC2 using long term treatment with CLP290 protected against deterioration of learning and cortical hyperactivity. In addition, restoring KCC2, using short term CLP290 treatment, following the transporter reduction effectively reversed spatial memory deficits and social dysfunction, linking chloride dysregulation with Alzheimer's disease-related cognitive decline. These results reveal KCC2 hypofunction as a viable target for treatment of Alzheimer's disease-related cognitive decline; they confirm target engagement, where the therapeutic intervention takes place, and its effectiveness.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Simportadores , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Cloretos , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/genética , Simportadores/genética , Mutação/genética , Modelos Animais de Doenças
4.
Neurobiol Aging ; 130: 154-171, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531809

RESUMO

This study investigated the impact of familial Alzheimer's disease (AD)-linked amyloid precursor protein (App) mutations on hippocampal CA1 neuronal activity and function at an early disease stage in AppNL-G-F/NL-G-F × Thy1-GCaMP6s+/- (A-TG) mice using calcium imaging. Longitudinal assessment of spatial behavior at 12 and 18 months of age identified an early disease stage at 12 months when there was significant amyloid beta pathology with mild behavioral deficits. Hippocampal CA1 neuronal activity and event-related encoding of distance and time were therefore assessed at 12 months of age in several configurations of an air-induced running task to assess the dynamics of cellular activity. Neurons in A-TG mice displayed diminished (weaker) and more frequent (hyperactive) neuronal firing that was more pronounced during movement compared to immobility. Responsive neurons showed configuration-specific deficits in distance and time encoding with impairment in adapting their responses to changing configurations. These results suggest that at an early stage of AD in the absence of full-blown behavioral deficits, weak-hyperactive neuronal activity may induce impairments in sensory perception of changing environments.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/patologia , Camundongos Transgênicos , Neurônios/metabolismo , Sintomas Prodrômicos
5.
iScience ; 26(4): 106481, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37096033

RESUMO

Hippocampal CA1 neurons respond to sensory stimuli during enforced immobility, movement, and their transitions in a new conveyor belt task. Head-fixed mice were exposed to light flashes or air streams while at rest, spontaneously moving, or running a fixed distance. Two-photon calcium imaging of CA1 neurons revealed that 62% of 3341 imaged cells were active during one or more of 20 sensorimotor events. Of these active cells, 17% were active for any given sensorimotor event, with a higher proportion during locomotion. The study found two types of cells: Conjunctive cells that were active across multiple events, and complementary cells that were active only during individual events, encoding novel sensorimotor events or their delayed repetitions. The configuration of these cells across changing sensorimotor events may signify the role of hippocampus in functional networks integrating sensory information with ongoing movement making it suitable for movement guidance.

6.
Neurosci Biobehav Rev ; 112: 1-27, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31996301

RESUMO

Alzheimer's disease (AD) is characterized neuropathologically by progressive neurodegeneration and by the presence of amyloid plaques and neurofibrillary tangles. These plaques and tangles are composed, respectively, of amyloid-beta (Aß) and tau proteins. While long recognized as hallmarks of AD, it remains unclear what causes the formation of these insoluble deposits. One theory holds that prion-like templated misfolding of Aß and tau induces these proteins to form pathological aggregates, and propagation of this misfolding causes the stereotyped progression of pathology commonly seen in AD. Supporting this theory, numerous studies have been conducted in which aggregated Aß, tau, or α-synuclein is injected intracerebrally into pathology-free host animals, resulting in robust formation of pathology. Here, we review this literature, focusing on in vivo intracerebral seeding of Aß and tau in mice. We compare the results of these experiments to what is known about the seeding and spread of α-synuclein pathology, and we discuss how this research informs our understanding of the factors underlying the onset, progression, and outcomes of proteinaceous pathologies.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Priônicas/induzido quimicamente , alfa-Sinucleína/farmacologia , Proteínas tau/farmacologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Camundongos , alfa-Sinucleína/administração & dosagem , Proteínas tau/administração & dosagem
7.
Behav Brain Res ; 379: 112336, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31689442

RESUMO

In the central nervous system, certain neurons store zinc within the synaptic vesicles of their axon terminals. This vesicular zinc can then be released in an activity-dependent fashion as an intercellular signal. The functions of vesicular zinc are not entirely understood, but evidence suggests that it is important for some forms of experience-dependent plasticity in the brain. The ability of neurons to store and release vesicular zinc is dependent on expression of the vesicular zinc transporter, ZnT3. Here, we examined the neuronal morphology of mice that lack ZnT3. Brains were collected from mice housed under standard laboratory conditions and from mice housed in enriched environments - large, multilevel enclosures with running wheels, numerous objects and tunnels, and a greater number of cage mates. Golgi-Cox staining was used to visualize neurons for analysis of dendritic length and dendritic spine density. Neurons were analyzed from the barrel cortex, striatum, basolateral amygdala, and hippocampus (CA1). ZnT3 knockout mice, relative to wild type mice, exhibited increased basal dendritic length in the layer 2/3 pyramidal neurons of barrel cortex, independently of housing condition. Environmental enrichment decreased apical dendritic length in these same neurons and increased dendritic spine density on striatal medium spiny neurons. Elimination of ZnT3 did not modulate any of the effects of enrichment. Our results provide no evidence that vesicular zinc is required for the experience-dependent changes that occur in response to environmental enrichment. They are consistent, however, with recent reports suggesting increased cortical volume in ZnT3 knockout mice.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Corpo Estriado , Espinhas Dendríticas/ultraestrutura , Córtex Somatossensorial , Vesículas Sinápticas/metabolismo , Zinco/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Proteínas de Transporte de Cátions/deficiência , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Meio Ambiente , Feminino , Abrigo para Animais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo
8.
Hippocampus ; 30(6): 623-637, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31821659

RESUMO

Depression is a leading cause of disability worldwide, in part because the available treatments are inadequate and do not work for many people. The neurobiology of depression, and the mechanism of action of common antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs), is not well understood. One mechanism thought to underlie the effects of these drugs is upregulation of adult hippocampal neurogenesis. Evidence indicates that vesicular zinc is required for modulation of adult hippocampal neurogenesis, at least under some circumstances. Vesicular zinc refers to zinc that is stored in the synaptic vesicles of certain neurons, including in the hippocampus, and released in response to neuronal activity. It can be eliminated from the brain by deletion of zinc transporter 3 (ZnT3), as is the case in ZnT3 knockout mice. Here, we examined the effects of repeated social defeat stress and subsequent chronic treatment with the SSRI fluoxetine on behavior and neurogenesis in ZnT3 knockout mice. We hypothesized that fluoxetine treatment would increase neurogenesis and reverse stress-induced behavioral symptoms in wild type, but not ZnT3 knockout, mice. As anticipated, stress induced persistent depression-like effects, including social avoidance and anxiety-like behavior. Fluoxetine decreased social avoidance, though the effect was not specific to the stressed mice, but did not affect anxiety-like behavior. Surprisingly, stress increased the survival of neurons born 1 day after the last episode of defeat stress. Fluoxetine treatment also increased cell survival, particularly in wild type mice, though it did not affect proliferation. Our results did not support our hypothesis that vesicular zinc is required for the behavioral benefits of fluoxetine treatment. As to whether vesicular zinc is required for the neurogenic effects of fluoxetine, our results were inconclusive, warranting further investigation into the role of vesicular zinc in adult hippocampal neurogenesis.


Assuntos
Proteínas de Transporte de Cátions/deficiência , Fluoxetina/uso terapêutico , Neurogênese/fisiologia , Derrota Social , Estresse Psicológico/metabolismo , Zinco/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Feminino , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
9.
Neuroscience ; 425: 90-100, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31785352

RESUMO

In certain neurons, zinc ions are stored in synaptic vesicles by zinc transporter 3 (ZnT3). Vesicular zinc can then be released synaptically to modulate myriad targets. In vitro evidence indicates that these targets may include brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB). But the effects of vesicular zinc on BDNF and TrkB in the intact brain are unclear. Studies of mice that lack ZnT3 - and, as a result, vesicular zinc - have shown abnormalities in BDNF and TrkB levels, but results have been mixed and are therefore difficult to interpret. This might be caused by differences in the age or sex of mice tested. In the present study, we measured BDNF and TrkB levels in the hippocampus and neocortex, comparing wild type and ZnT3 knockout mice of both sexes at two ages (5 and 12 weeks). We also examined BDNF mRNA expression and protein levels at an intermediate age (8-10 weeks). We found that, regardless of age or sex, BDNF and TrkB protein levels did not differ between wild type and ZnT3 knockout mice. There were sex-specific differences in BDNF protein and mRNA expression, however. BDNF protein levels increased with age in female mice but not in males. And in females, but not males, ZnT3 KO mice exhibited great hippocampal BDNF mRNA expression than wild type mice. We conclude that, at least in naïve mice housed under standard laboratory conditions, elimination of vesicular zinc does not affect BDNF or TrkB protein levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Envelhecimento , Animais , Proteínas de Transporte/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptor trkB/genética , Fatores Sexuais , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Zinco/deficiência , Zinco/metabolismo
10.
Neurobiol Stress ; 9: 199-213, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30450385

RESUMO

Chronic stress can have deleterious effects on mental health, increasing the risk of developing depression or anxiety. But not all individuals are equally affected by stress; some are susceptible while others are more resilient. Understanding the mechanisms that lead to these differing outcomes has been a focus of considerable research. One unexplored mechanism is vesicular zinc - zinc that is released by neurons as a neuromodulator. We examined how chronic stress, induced by repeated social defeat, affects mice that lack vesicular zinc due to genetic deletion of zinc transporter 3 (ZnT3). These mice, unlike wild type mice, did not become socially avoidant of a novel conspecific, suggesting resilience to stress. However, they showed enhanced sensitivity to the potentiating effect of stress on cued fear memory. Thus, the contribution of vesicular zinc to stress susceptibility is not straightforward. Stress also increased anxiety-like behaviour but produced no deficits in a spatial Y-maze test. We found no evidence that microglial activation or hippocampal neurogenesis accounted for the differences in behavioural outcome. Volumetric analysis revealed that ZnT3 KO mice have larger corpus callosum and parietal cortex volumes, and that corpus callosum volume was decreased by stress in ZnT3 KO, but not wild type, mice.

11.
Elife ; 62017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28985179

RESUMO

Certain neurons in the auditory cortex release zinc to influence how the brain processes sounds.


Assuntos
Córtex Auditivo , Zinco , Estimulação Acústica , Percepção Auditiva , Audição
12.
Neurosci Biobehav Rev ; 80: 329-350, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28624432

RESUMO

Zinc transporter 3 (ZnT3) is the sole mechanism responsible for concentrating zinc ions within synaptic vesicles in a subset of the brain's glutamatergic neurons. This vesicular zinc can then be released into the synaptic cleft in an activity-dependent fashion, where it can exert many signaling functions. This review provides a comprehensive discussion of the localization and function of ZnT3 and vesicular zinc in the central nervous system. We begin by reviewing the fundamentals of zinc homeostasis and transport, and the discovery of ZnT3. We then focus on four main topics. I) The anatomy of the zincergic system, including its development and its modulation through experience-dependent plasticity. II) The role of zinc in intracellular signaling, with a focus on how zinc affects neurotransmitter receptors and synaptic plasticity. III) The behavioural characterization of the ZnT3 KO mouse, which lacks ZnT3 and, therefore, vesicular zinc. IV) The roles of ZnT3 and vesicular zinc in health and disease.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Sistema Nervoso Central/metabolismo , Vesículas Sinápticas/metabolismo , Zinco/metabolismo , Animais , Humanos , Transmissão Sináptica/fisiologia
13.
Behav Brain Res ; 321: 36-49, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28012850

RESUMO

Zinc is an important element in all cells of the body, having structural, enzymatic, and regulatory functions. In some neurons, zinc is loaded into synaptic vesicles by zinc transporter 3 (ZnT3) and released into the synaptic cleft, where it can modulate neuronal function. ZnT3 knockout (KO) mice lack ZnT3 and thus lack synaptic zinc. Previous studies have examined the behavioral phenotype of ZnT3 KO mice, mostly using mixed-sex or male-only groups. In the present study we focused specifically on the behavior of female ZnT3 KO mice (2-3 months old). An extensive battery of tests was administered to assess sensorimotor and cognitive behaviours, as well as to examine for a possible schizophrenia-like phenotype. ZnT3 KO mice performed similarly to wild type controls in the majority of tests. However, they were less accurate in the skilled reach task, suggesting impaired skilled motor learning, and faster to descend a vertical pole. ZnT3 KO mice were also slower in the open field and made fewer chamber entries in the social preference test, suggesting decreased exploratory locomotion. No differences were observed in the Morris water task or fear conditioning test. This is the first study to show a behavioural phenotype specifically for female ZnT3 KO mice. Comparing our results to previous studies, it appears that there may be sex-specific effects of eliminating ZnT3. Female ZnT3 KO mice exhibit abnormalities in locomotion and at skilled motor learning, but we were unable to detect spatial or fear learning deficits previously described in male ZnT3 KO mice.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Membrana/deficiência , Animais , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions , Cognição/fisiologia , Condicionamento Psicológico/fisiologia , Comportamento Exploratório/fisiologia , Medo/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Reação de Congelamento Cataléptica/fisiologia , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Camundongos Knockout , Atividade Motora/fisiologia , Fenótipo , Inibição Pré-Pulso/fisiologia , Testes Psicológicos , Caracteres Sexuais , Comportamento Social
14.
Behav Brain Res ; 290: 102-16, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25956871

RESUMO

Injury of the brain is a leading cause of long-term disability. Recent evidence indicates that the selective serotonin reuptake inhibitor drug fluoxetine may be beneficial when administered following brain injury. However, its potential to promote recovery and the mechanisms by which it might do so require further characterization. In the present experiment, fluoxetine was administered to mice for 4 weeks following injury of medial frontal cortex (MFC). MFC injury altered behavior, reducing locomotion, decreasing swim speed in the Morris water task, and decreasing anxiety-like behavior in the elevated plus maze. Fluoxetine treatment did not affect these behavioral alterations, but it did increase the social dominance of the injured mice, as assessed by the tube test. Fluoxetine treatment also hastened learning of a T-maze position discrimination task, independently of lesion condition. Anatomically, fluoxetine failed to decrease lesion size, increase the survival of cells born 1-week post injury in the hippocampal dentate gyrus, or reverse the reduction in spine density in layer II/III pyramidal neurons in cingulate cortex caused by the lesions. Fluoxetine did, however, increase the dendritic arborization of these cells, which was reduced in the mice with lesions. Thus, while not all the effects of MFC injury were ameliorated, the behavioral outcome of mice with MFC injuries was improved, and one of the neuroanatomical sequelae of the lesions counteracted, by chronic fluoxetine, further contributing to the evidence that fluoxetine could be a useful treatment following brain injury.


Assuntos
Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Fluoxetina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Predomínio Social , Animais , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Fluoxetina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/lesões , Córtex Pré-Frontal/fisiopatologia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem
15.
Physiol Behav ; 139: 136-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446224

RESUMO

Serotonin (5-HT) is an important regulator of the mammalian circadian system, and has been implicated in modulating entrained and free-running rhythms, as well as photic and non-photic phase shifting. In general, 5-HT appears to oppose the actions of light on the circadian system of nocturnal rodents. As well, 5-HT mediates, at least in part, some non-photic responses. The 5-HT1A, 1B and 7 receptors regulate these acute responses to zeitgebers. 5-HT also regulates some entrained and free-running properties of the circadian clock. The receptors that contribute to these phenomena have not been fully examined. Here, we use 5-HT1A receptor knockout (KO) mice to examine the response of the mouse circadian system to a variety of lighting conditions, including a normal light-dark cycle (LD), T-cycles, phase advanced LD cycles, constant darkness (DD), constant light (LL) and a 6 hour dark pulse starting at CT5. Relative to wildtype mice, the 5-HT1A receptor KO mice have lower levels of activity during the first 8h of the night/subjective night in LD and LL, later activity onsets on transient days during re-entrainment, shorter free-running periods in LL when housed with wheels, and smaller phase shifts to dark pulses. No differences were noted in activity levels during DD, alpha under any light condition, free-running period in DD, or phase angle of entrainment in LD. While the 5-HT1A receptor plays an important role in regulating photic and non-photic phase shifting, its contribution to entrained and free-running properties of the circadian clock is relatively minor.


Assuntos
Adaptação Ocular/genética , Ritmo Circadiano/genética , Receptor 5-HT1A de Serotonina/deficiência , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Estimulação Luminosa , Serotonina/metabolismo , Fatores de Tempo
16.
Dev Biol ; 399(1): 54-67, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25528224

RESUMO

Purkinje cells of the developing cerebellum secrete the morphogen sonic hedgehog (SHH), which is required to maintain the proliferative state of granule cell precursors (GCPs) prior to their differentiation and migration to form the internal granule layer (IGL). Despite a wealth of knowledge regarding the function of SHH during cerebellar development, the upstream regulators of Shh expression during this process remain largely unknown. Here we report that the murine short stature homeobox 2 (Shox2) gene is required for normal Shh expression in dorsal-residing Purkinje cells. Using two different Cre drivers, we show that elimination of Shox2 in the brain results in developmental defects in the inferior colliculus and cerebellum. Specifically, loss of Shox2 in the cerebellum results in precocious differentiation and migration of GCPs from the external granule layer (EGL) to the IGL. This correlates with premature bone morphogenetic protein 4 (Bmp4) expression in granule cells of the dorsal cerebellum. The size of the neonatal cerebellum is reduced in Shox2-mutant animals, which is consistent with a reduction in the number of GCPs present in the EGL, and could account for the smaller vermis and thinner IGL present in adult Shox2mutants. Shox2-mutant mice also display reduced exploratory activity, altered gait and impaired motor coordination. Our findings are the first to show a role for Shox2 in brain development. We provide evidence that Shox2 plays an important role during cerebellar development, perhaps to maintain the proper balance of Shh and Bmp expression levels in the dorsal vermis, and demonstrate that in the absence of Shox2, mice display both cerebellar impairments and deficits in motor coordination, ultimately highlighting the importance of Shox2 in the cerebellum.


Assuntos
Cerebelo/metabolismo , Proteínas de Homeodomínio/genética , Atividade Motora/fisiologia , Transtornos dos Movimentos/fisiopatologia , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Atividade Motora/genética , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Organogênese/genética , Células de Purkinje/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Dev Neurosci ; 35(6): 437-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24247012

RESUMO

During and following pregnancy, women are at high risk of experiencing depression, for which fluoxetine (FLX; brand names Prozac, Sarafem, Rapiflux) is the most commonly prescribed treatment. An estimated 1.4-2.1% of pregnant women use this medication, which inhibits the reuptake of serotonin and thereby increases serotonergic activity at the synapse. Serotonin acts as a cue guiding numerous neurodevelopmental processes, and changes in the concentration of serotonin can disrupt normal in utero brain development and organization in humans and other animals, thus providing a mechanism by which maternal intake of FLX might alter neural development and ultimately behaviour. Despite this possibility, long-term alterations of behaviour and the brain have not been well studied in individuals exposed to FLX during pregnancy or soon after birth, perhaps because conducting such studies beyond infancy presents significant challenges. To remedy this problem, many researchers have turned to modelling the effects of developmental FLX exposure in non-human animals, primarily rodents. The body of literature on this topic has expanded considerably over the past several years, yet a comprehensive review is lacking. In order to fill this gap, we have summarized the findings of those studies describing the long-term behavioural and neurophysiological effects of FLX exposure in non-human animals in early development. We also discuss methodological considerations and common shortcomings of research in this area. The precise nature of the long-term effects of developmental FLX exposure remains difficult to specify, as these effects appear to be highly variable and dependent on numerous factors. Overall, however, it is clear that early FLX exposure in non-human animals can alter the development of the brain in ways that are relevant to behaviour in adulthood, decreasing exploration and social interaction, and in some cases altering anxiety- and depression-like behaviours..


Assuntos
Ansiedade/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Depressão/tratamento farmacológico , Fluoxetina/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo/crescimento & desenvolvimento , Feminino , Fluoxetina/efeitos adversos , Humanos , Gravidez , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA