Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Neurosurg Pediatr ; 34(1): 84-93, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608296

RESUMO

OBJECTIVE: Hydrocephalus is a neurological disorder with an incidence of 80-125 per 100,000 births in the United States. The most common treatment, ventricular shunting, has a failure rate of up to 85% within 10 years of placement. The authors aimed to analyze the association between ventricular catheter (VC) tissue obstructions and shunt malfunction for each hydrocephalus etiology. METHODS: Patient information was collected from 5 hospitals and entered into a REDCap (Research Electronic Data Capture) database by hydrocephalus etiology. The hardware samples were fixed, and each VC tip drainage hole was classified by tissue obstruction after macroscopic analysis. Shunt malfunction data, including shunt revision rate, time to failure, and age at surgery, were correlated with the degree of tissue obstruction in VCs for each etiology. RESULTS: Posthemorrhagic hydrocephalus was the most common etiology (48.9% of total cases). Proximal catheter obstruction was the most frequent cause of hardware removal (90.4%). Myelomeningocele (44% ± 29%), other congenital etiologies (48% ± 40%), hydrocephalus with brain tumors (45% ± 35%), and posthemorrhagic hydrocephalus (41% ± 35%) showed tissue aggregates in more than 40% of the VC holes. A total of 76.8% of samples removed because of symptoms of obstruction showed cellular or tissue aggregates. No conclusive etiological associations were detected when correlating the percentage of holes with tissue for each VC and age at surgery, shunt revision rates, or time between shunt implantation and removal. CONCLUSIONS: The proximal VC obstruction was accompanied by tissue aggregates in 76.8% of cases. However, the presence of tissue in the VC did not seem to be associated with hydrocephalus etiology.


Assuntos
Falha de Equipamento , Hidrocefalia , Humanos , Hidrocefalia/cirurgia , Hidrocefalia/etiologia , Masculino , Feminino , Lactente , Derivações do Líquido Cefalorraquidiano/efeitos adversos , Pré-Escolar , Obstrução do Cateter/etiologia , Derivação Ventriculoperitoneal/efeitos adversos , Criança , Recém-Nascido , Reoperação/estatística & dados numéricos , Estudos Retrospectivos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/complicações , Adolescente , Meningomielocele/complicações , Meningomielocele/cirurgia
2.
J Neurosurg ; 140(3): 627-638, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542436

RESUMO

OBJECTIVE: Ventriculoperitoneal shunting, the most common treatment for the neurological disorder hydrocephalus, has a failure rate of up to 98% within 10 years of placement, mainly because of proximal obstruction of the ventricular catheter (VC). The authors developed a new VC design modified with tethered liquid perfluorocarbon (TLP) and tested it in a porcine model of hydrocephalus. In this study, they aimed to determine if their TLP VC design reduced cell surface attachment and consequent shunt obstruction in the pig model. METHODS: TLP VCs were designed to reduce drainage hole obstruction using modified TLP and slightly enlarged draining holes, but their number and placement remained very similar to standard VCs. First, the authors tested the device in nonhydrocephalic rats to assess biocompatibility. After confirming safety, they implanted the VCs in hydrocephalic pigs. Hydrocephalus was induced by intracisternal kaolin injections in 30-day-old domestic juvenile pigs. Surgical implantation of the ventriculoperitoneal shunt (clinical control or TLP) was performed 10-14 days postinduction and maintained up to 30 days posttreatment. MRI was performed to measure ventricular volume before treatment and 10 and 30 days after treatment. Histological and immunohistochemical analyses of brain tissue and explanted VCs, intracranial pressure measurement, and clinical scoring were performed when the animals were euthanized. RESULTS: TLP VCs showed a similar surgical feel, kink resistance, and stiffness to control VCs. In rats (biocompatibility assessment), TLP VCs did not show brain inflammatory reactions after 30 or 60 days of implantation. In pigs, TLP VCs demonstrated increased survival time, improved clinical outcome scores, and significantly reduced total attached cells on the VCs compared with standard clinical control VCs. TLP VCs exhibited similar, but not worse, results related to ventriculomegaly, intracranial pressure, and the local tissue response around the cortical shunt track in pigs. CONCLUSIONS: TLP VCs may be a strong candidate to reduce proximal VC obstruction and improve hydrocephalus treatment.


Assuntos
Fluorocarbonos , Hidrocefalia , Suínos , Animais , Ratos , Hidrocefalia/cirurgia , Catéteres , Drenagem , Fluorocarbonos/farmacologia , Fluorocarbonos/uso terapêutico , Pressão Intracraniana
3.
J Neurosurg Pediatr ; 32(4): 447-454, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37503917

RESUMO

OBJECTIVE: The aim of this study was to explore how clinical factors, including the number of lifetime revision surgeries and the duration of implantation, affect the degree of obstruction and failure rates of ventricular catheters (VCs) used to manage hydrocephalus. METHODS: A total of 343 VCs and their associated clinical data, including patient demographics, medical history, and surgical details, were collected from 5 centers and used for this analysis. Each VC was classified by the degree of obstruction after macroscopic analysis. Univariate, multivariate, and binned analyses were conducted to test for associations between clinical data and degree of VC obstruction. RESULTS: VCs from patients with 0 to 2 lifetime revisions had a larger proportion of VC holes obstructed than VCs from patients with 10 or more revisions (p = 0.0484). VCs implanted for less than 3 months had fewer obstructed holes with protruding tissue aggregates than VCs implanted for 13 months or longer (p = 0.0225). Neither duration of implantation nor the number of lifetime revisions was a significant predictor of the degree of VC obstruction in the regression models. In the multinomial regression model, contact of the VCs with the ventricular wall robustly predicted the overall obstruction status of a VC (p = 0.005). In the mixed-effects model, the age of the patient at their first surgery emerged as a significant predictor of obstruction by protruding tissue aggregates (p = 0.002). VCs implanted through the parietal entry site were associated with more holes with nonobstructive growth and fewer empty holes than VCs implanted via other approaches (p = 0.001). CONCLUSIONS: The number of lifetime revisions and duration of implantation are correlated with the degree of VC obstruction but do not predict it. Contact of the VC with the ventricular wall and the age of the patient at their first surgery are predictors of the degree of VC obstruction, while the entry site of the VC correlates with it.


Assuntos
Obstrução do Cateter , Hidrocefalia , Humanos , Estudos Retrospectivos , Catéteres , Hidrocefalia/cirurgia , Derivação Ventriculoperitoneal/efeitos adversos
4.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982724

RESUMO

Aquaporin-4 (AQP4) plays a crucial role in brain water circulation and is considered a therapeutic target in hydrocephalus. Congenital hydrocephalus is associated with a reaction of astrocytes in the periventricular white matter both in experimental models and human cases. A previous report showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into the lateral ventricles of hyh mice exhibiting severe congenital hydrocephalus are attracted by the periventricular astrocyte reaction, and the cerebral tissue displays recovery. The present investigation aimed to test the effect of BM-MSC treatment on astrocyte reaction formation. BM-MSCs were injected into the lateral ventricles of four-day-old hyh mice, and the periventricular reaction was detected two weeks later. A protein expression analysis of the cerebral tissue differentiated the BM-MSC-treated mice from the controls and revealed effects on neural development. In in vivo and in vitro experiments, BM-MSCs stimulated the generation of periventricular reactive astrocytes overexpressing AQP4 and its regulatory protein kinase D-interacting substrate of 220 kDa (Kidins220). In the cerebral tissue, mRNA overexpression of nerve growth factor (NGF), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF1α), and transforming growth factor beta 1 (TGFß1) could be related to the regulation of the astrocyte reaction and AQP4 expression. In conclusion, BM-MSC treatment in hydrocephalus can stimulate a key developmental process such as the periventricular astrocyte reaction, where AQP4 overexpression could be implicated in tissue recovery.


Assuntos
Hidrocefalia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Astrócitos/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Hidrocefalia/terapia , Hidrocefalia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
5.
Exp Neurol ; 363: 114354, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822393

RESUMO

BACKGROUND: Hydrocephalus is a neurological disease with an incidence of 0.3-0.7 per 1000 live births in the United States. Ventriculomegaly, periventricular white matter alterations, inflammation, and gliosis are among the neuropathologies associated with this disease. We hypothesized that hippocampus structure and subgranular zone neurogenesis are altered in untreated hydrocephalus and correlate with recognition memory deficits. METHODS: Hydrocephalus was induced by intracisternal kaolin injections in domestic juvenile pigs (43.6 ± 9.8 days). Age-matched sham controls received similar saline injections. MRI was performed to measure ventricular volume, and/or hippocampal and perirhinal sizes at 14 ± 4 days and 36 ± 8 days post-induction. Recognition memory was assessed one week before and after kaolin induction. Histology and immunohistochemistry in the hippocampus were performed at sacrifice. RESULTS: The hippocampal width and the perirhinal cortex thickness were decreased (p < 0.05) in hydrocephalic pigs 14 ± 4 days post-induction. At sacrifice (36 ± 8 days post-induction), significant expansion of the cerebral ventricles was detected (p = 0.005) in hydrocephalic pigs compared with sham controls. The area of the dorsal hippocampus exhibited a reduction (p = 0.035) of 23.4% in the hydrocephalic pigs at sacrifice. Likewise, in hydrocephalic pigs, the percentages of neuronal precursor cells (doublecortin+ cells) and neurons decreased (p < 0.01) by 32.35%, and 19.74%, respectively, in the subgranular zone of the dorsal hippocampus. The percentage of reactive astrocytes (vimentin+) was increased (p = 0.041) by 48.7%. In contrast, microglial cells were found to decrease (p = 0.014) by 55.74% in the dorsal hippocampus in hydrocephalic pigs. There was no difference in the recognition index, a summative measure of learning and memory, one week before and after the induction of hydrocephalus. CONCLUSION: In untreated juvenile pigs, acquired hydrocephalus caused morphological alterations, reduced neurogenesis, and increased reactive astrocytosis in the hippocampus and perirhinal cortex.


Assuntos
Hidrocefalia , Caulim , Animais , Suínos , Caulim/efeitos adversos , Gliose/etiologia , Gliose/patologia , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/patologia , Hipocampo/patologia , Inflamação/patologia , Neurogênese
6.
Fluids Barriers CNS ; 19(1): 78, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171630

RESUMO

BACKGROUND: The composition of tissue obstructing neuroprosthetic devices is largely composed of inflammatory cells with a significant astrocyte component. In a first-of-its-kind study, we profile the astrocyte phenotypes present on hydrocephalus shunts. METHODS: qPCR and RNA in-situ hybridization were used to quantify pro-inflammatory (A1) and anti-inflammatory (A2) reactive astrocyte phenotypes by analyzing C3 and EMP1 genes, respectively. Additionally, CSF cytokine levels were quantified using ELISA. In an in vitro model of astrocyte growth on shunts, different cytokines were used to prevent the activation of resting astrocytes into the A1 and A2 phenotypes. Obstructed and non-obstructed shunts were characterized based on the degree of actual tissue blockage on the shunt surface instead of clinical diagnosis. RESULTS: The results showed a heterogeneous population of A1 and A2 reactive astrocytes on the shunts with obstructed shunts having a significantly higher proportion of A2 astrocytes compared to non-obstructed shunts. In addition, the pro-A2 cytokine IL-6 inducing proliferation of astrocytes was found at higher concentrations among CSF from obstructed samples. Consequently, in the in vitro model of astrocyte growth on shunts, cytokine neutralizing antibodies were used to prevent activation of resting astrocytes into the A1 and A2 phenotypes which resulted in a significant reduction in both A1 and A2 growth. CONCLUSIONS: Therefore, targeting cytokines involved with astrocyte A1 and A2 activation is a promising intervention aimed to prevent shunt obstruction.


Assuntos
Astrócitos , Hidrocefalia , Anti-Inflamatórios/farmacologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Astrócitos/fisiologia , Citocinas/metabolismo , Humanos , Hidrocefalia/metabolismo , Interleucina-6 , RNA/metabolismo , RNA/farmacologia
7.
Fluids Barriers CNS ; 19(1): 17, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193620

RESUMO

BACKGROUND: Hydrocephalus is a neurological disease with an incidence of 80-125 per 100,000 births in the United States. Neuropathology comprises ventriculomegaly, periventricular white matter (PVWM) alterations, inflammation, and gliosis. We hypothesized that hydrocephalus in a pig model is associated with subventricular and PVWM cellular alterations and neuroinflammation that could mimic the neuropathology described in hydrocephalic infants. METHODS: Hydrocephalus was induced by intracisternal kaolin injections in 35-day old female pigs (n = 7 for tissue analysis, n = 10 for CSF analysis). Age-matched sham controls received saline injections (n = 6). After 19-40 days, MRI scanning was performed to measure the ventricular volume. Stem cell proliferation was studied in the Subventricular Zone (SVZ), and cell death and oligodendrocytes were examined in the PVWM. The neuroinflammatory reaction was studied by quantifying astrocytes and microglial cells in the PVWM, and inflammatory cytokines in the CSF. RESULTS: The expansion of the ventricles was especially pronounced in the body of the lateral ventricle, where ependymal disruption occurred. PVWM showed a 44% increase in cell death and a 67% reduction of oligodendrocytes. In the SVZ, the number of proliferative cells and oligodendrocyte decreased by 75% and 57% respectively. The decrease of the SVZ area correlated significantly with ventricular volume increase. Neuroinflammation occurred in the hydrocephalic pigs with a significant increase of astrocytes and microglia in the PVWM, and high levels of inflammatory interleukins IL-6 and IL-8 in the CSF. CONCLUSION: The induction of acquired hydrocephalus produced alterations in the PVWM, reduced cell proliferation in the SVZ, and neuroinflammation.


Assuntos
Hidrocefalia , Substância Branca , Animais , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Feminino , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/patologia , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/patologia , Doenças Neuroinflamatórias , Suínos , Substância Branca/patologia
8.
Fluids Barriers CNS ; 18(1): 62, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952604

RESUMO

BACKGROUND: Intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus (PHH) have a complex pathophysiology involving inflammatory response, ventricular zone and cell-cell junction disruption, and choroid-plexus (ChP) hypersecretion. Increased cerebrospinal fluid (CSF) cytokines, extracellular matrix proteins, and blood metabolites have been noted in IVH/PHH, but osmolality and electrolyte disturbances have not been evaluated in human infants with these conditions. We hypothesized that CSF total protein, osmolality, electrolytes, and immune cells increase in PHH. METHODS: CSF samples were obtained from lumbar punctures of control infants and infants with IVH prior to the development of PHH and any neurosurgical intervention. Osmolality, total protein, and electrolytes were measured in 52 infants (18 controls, 10 low grade (LG) IVH, 13 high grade (HG) IVH, and 11 PHH). Serum electrolyte concentrations, and CSF and serum cell counts within 1-day of clinical sampling were obtained from clinical charts. Frontal occipital horn ratio (FOR) was measured for estimating the degree of ventriculomegaly. Dunn or Tukey's post-test ANOVA analysis were used for pair-wise comparisons. RESULTS: CSF osmolality, sodium, potassium, and chloride were elevated in PHH compared to control (p = 0.012 - < 0.0001), LGIVH (p = 0.023 - < 0.0001), and HGIVH (p = 0.015 - 0.0003), while magnesium and calcium levels were higher compared to control (p = 0.031) and LGIVH (p = 0.041). CSF total protein was higher in both HGIVH and PHH compared to control (p = 0.0009 and 0.0006 respectively) and LGIVH (p = 0.034 and 0.028 respectively). These differences were not reflected in serum electrolyte concentrations nor calculated osmolality across the groups. However, quantitatively, CSF sodium and chloride contributed 86% of CSF osmolality change between control and PHH; and CSF osmolality positively correlated with CSF sodium (r, p = 0.55,0.0015), potassium (r, p = 0.51,0.0041), chloride (r, p = 0.60,0.0004), but not total protein across the entire patient cohort. CSF total cells (p = 0.012), total nucleated cells (p = 0.0005), and percent monocyte (p = 0.016) were elevated in PHH compared to control. Serum white blood cell count increased in PHH compared to control (p = 0.042) but there were no differences in serum cell differential across groups. CSF total nucleated cells also positively correlated with CSF osmolality, sodium, potassium, and total protein (p = 0.025 - 0.0008) in the whole cohort. CONCLUSIONS: CSF osmolality increased in PHH, largely driven by electrolyte changes rather than protein levels. However, serum electrolytes levels were unchanged across groups. CSF osmolality and electrolyte changes were correlated with CSF total nucleated cells which were also increased in PHH, further suggesting PHH is a neuro-inflammatory condition.


Assuntos
Hemorragia Cerebral Intraventricular/líquido cefalorraquidiano , Líquido Cefalorraquidiano/química , Hidrocefalia/líquido cefalorraquidiano , Doenças do Prematuro/líquido cefalorraquidiano , Hemorragia Cerebral Intraventricular/complicações , Feminino , Humanos , Hidrocefalia/etiologia , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Estudos Retrospectivos
9.
Neurology ; 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799460

RESUMO

BACKGROUND AND OBJECTIVES: The neurological deficits of neonatal post-hemorrhagic hydrocephalus (PHH) have been linked to periventricular white matter injury. To improve understanding of PHH-related injury, diffusion basis spectrum imaging (DBSI) was applied in neonates, modeling axonal and myelin integrity, fiber density, and extra-fiber pathologies. Objectives included characterizing DBSI measures in periventricular tracts, associating measures with ventricular size, and examining MRI findings in the context of post-mortem white matter histology from similar cases. METHODS: A prospective cohort of infants born very preterm underwent term equivalent MRI, including infants with PHH, high-grade intraventricular hemorrhage without hydrocephalus (IVH), and controls (VPT). DBSI metrics extracted from the corpus callosum, corticospinal tracts, and optic radiations included fiber axial diffusivity, fiber radial diffusivity, fiber fractional anisotropy, fiber fraction (fiber density), restricted fractions (cellular infiltration), and non-restricted fractions (vasogenic edema). Measures were compared across groups and correlated with ventricular size. Corpus callosum postmortem immunohistochemistry in infants with and without PHH assessed intra- and extra-fiber pathologies. RESULTS: Ninety-five infants born very preterm were assessed (68 VPT, 15 IVH, 12 PHH). Infants with PHH had the most severe white matter abnormalities and there were no consistent differences in measures between IVH and VPT groups. Key tract-specific white matter injury patterns in PHH included reduced fiber fraction in the setting of axonal and/or myelin injury, increased cellular infiltration, vasogenic edema, and inflammation. Specifically, measures of axonal injury were highest in the corpus callosum; both axonal and myelin injury were observed in the corticospinal tracts; and axonal and myelin integrity were preserved in the setting of increased extra-fiber cellular infiltration and edema in the optic radiations. Increasing ventricular size correlated with worse DBSI metrics across groups. On histology, infants with PHH had high cellularity, variable cytoplasmic vacuolation, and low synaptophysin marker intensity. DISCUSSION: PHH was associated with diffuse white matter injury, including tract-specific patterns of axonal and myelin injury, fiber loss, cellular infiltration, and inflammation. Larger ventricular size was associated with greater disruption. Postmortem immunohistochemistry confirmed MRI findings. These results demonstrate DBSI provides an innovative approach extending beyond conventional diffusion MRI for investigating neuropathological effects of PHH on neonatal brain development.

10.
Fluids Barriers CNS ; 18(1): 49, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749745

RESUMO

BACKGROUND: Many animal models have been used to study the pathophysiology of hydrocephalus; most of these have been rodent models whose lissencephalic cerebral cortex may not respond to ventriculomegaly in the same way as gyrencephalic species and whose size is not amenable to evaluation of clinically relevant neurosurgical treatments. Fewer models of hydrocephalus in gyrencephalic species have been used; thus, we have expanded upon a porcine model of hydrocephalus in juvenile pigs and used it to explore surgical treatment methods. METHODS: Acquired hydrocephalus was induced in 33-41-day old pigs by percutaneous intracisternal injections of kaolin (n = 17). Controls consisted of sham saline-injected (n = 6) and intact (n = 4) animals. Magnetic resonance imaging (MRI) was employed to evaluate ventriculomegaly at 11-42 days post-kaolin and to plan the surgical implantation of ventriculoperitoneal shunts at 14-38-days post-kaolin. Behavioral and neurological status were assessed. RESULTS: Bilateral ventriculomegaly occurred post-induction in all regions of the cerebral ventricles, with prominent CSF flow voids in the third ventricle, foramina of Monro, and cerebral aqueduct. Kaolin deposits formed a solid cast in the basal cisterns but the cisterna magna was patent. In 17 untreated hydrocephalic animals. Mean total ventricular volume was 8898 ± 5917 SD mm3 at 11-43 days of age, which was significantly larger than the baseline values of 2251 ± 194 SD mm3 for 6 sham controls aged 45-55 days, (p < 0.001). Past the post-induction recovery period, untreated pigs were asymptomatic despite exhibiting mild-moderate ventriculomegaly. Three out of 4 shunted animals showed a reduction in ventricular volume after 20-30 days of treatment, however some developed ataxia and lethargy, from putative shunt malfunction. CONCLUSIONS: Kaolin induction of acquired hydrocephalus in juvenile pigs produced an in vivo model that is highly translational, allowing systematic studies of the pathophysiology and clinical treatment of hydrocephalus.


Assuntos
Modelos Animais de Doenças , Hidrocefalia/patologia , Hidrocefalia/cirurgia , Derivação Ventriculoperitoneal , Fatores Etários , Animais , Hidrocefalia/induzido quimicamente , Hidrocefalia/diagnóstico por imagem , Caulim/administração & dosagem , Imageamento por Ressonância Magnética , Suínos
11.
Fluids Barriers CNS ; 18(1): 33, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289858

RESUMO

BACKGROUND: Implantation of ventricular catheters (VCs) to drain cerebrospinal fluid (CSF) is a standard approach to treat hydrocephalus. VCs fail frequently due to tissue obstructing the lumen via the drainage holes. Mechanisms driving obstruction are poorly understood. This study aimed to characterize the histological features of VC obstructions and identify links to clinical factors. METHODS: 343 VCs with relevant clinical data were collected from five centers. Each hole on the VCs was classified by degree of tissue obstruction after macroscopic analysis. A subgroup of 54 samples was analyzed using immunofluorescent labelling, histology and immunohistochemistry. RESULTS: 61.5% of the 343 VCs analyzed had tissue aggregates occluding at least one hole (n = 211) however the vast majority of the holes (70%) showed no tissue aggregates. Mean age at which patients with occluded VCs had their first surgeries (3.25 yrs) was lower than in patients with non-occluded VCs (5.29 yrs, p < 0.02). Mean length of time of implantation of occluded VCs, 33.22 months was greater than for non-occluded VCs, 23.8 months (p = 0.02). Patients with myelomeningocele had a greater probability of having an occluded VC (p = 0.0426). VCs with occlusions had greater numbers of macrophages and astrocytes in comparison to non-occluded VCs (p < 0.01). Microglia comprised only 2-6% of the VC-obstructing tissue aggregates. Histologic analysis showed choroid plexus occlusion in 24%, vascularized glial tissue occlusion in 24%, prevalent lymphocytic inflammation in 29%, and foreign body giant cell reactions in 5% and no ependyma. CONCLUSION: Our data show that age of the first surgery and length of time a VC is implanted are factors that influence the degree of VC obstruction. The tissue aggregates obstructing VCs are composed predominantly of astrocytes and macrophages; microglia have a relatively small presence.


Assuntos
Obstrução do Cateter/efeitos adversos , Cateteres de Demora/efeitos adversos , Plexo Corióideo/patologia , Hidrocefalia/cirurgia , Derivação Ventriculoperitoneal/efeitos adversos , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Plexo Corióideo/citologia , Feminino , Humanos , Hidrocefalia/diagnóstico , Imageamento Tridimensional/métodos , Lactente , Masculino , Estudos Retrospectivos , Fatores de Tempo , Derivação Ventriculoperitoneal/tendências , Adulto Jovem
12.
Fluids Barriers CNS ; 18(1): 4, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514409

RESUMO

BACKGROUND: Approximately 30% of cerebrospinal fluid (CSF) shunt systems for hydrocephalus fail within the first year and 98% of all patients will have shunt failure in their lifetime. Obstruction remains the most common reason for shunt failure. Previous evidence suggests elevated pro-inflammatory cytokines in CSF are associated with worsening clinical outcomes in neuroinflammatory diseases. The aim of this study was to determine whether cytokines and matrix metalloproteinases (MMPs) contribute towards shunt failure in hydrocephalus. METHODS: Using multiplex ELISA, this study examined shunt failure through the CSF protein concentration profiles of select pro-inflammatory and anti-inflammatory cytokines, as well as select MMPs. Interdependencies such as the past number of previous revisions, length of time implanted, patient age, and obstruction or non-obstruction revision were examined. The pro-inflammatory cytokines were IL-1ß, IL-2, IL-5, IL-6, IL-8, IL-12, IL-17, TNF-α, GM-CSF, IFN-γ. The anti-inflammatory cytokines were IL-4 and IL-10, and the MMPs were MMP-2, MMP-3, MMP-7, MMP-9. Protein concentration is reported as pg/mL for each analyte. RESULTS: Patient CSF was obtained at the time of shunt revision operation; all pediatric (< 18), totaling n = 38. IL-10, IL-6, IL-8 and MMP-7 demonstrated significantly increased concentrations in patient CSF for the non-obstructed subgroup. Etiological examination revealed IL-6 was increased in both obstructed and non-obstructed cases for PHH and congenital hydrocephalic patients, while IL-8 was higher only in PHH patients. In terms of number of past revisions, IL-10, IL-6, IL-8, MMP-7 and MMP-9 progressively increased from zero to two past revisions and then remained low for subsequent revisions. This presentation was notably absent in the obstruction subgroup. Shunts implanted for three months or less showed significantly increased concentrations of IL-6, IL-8, and MMP-7 in the obstruction subgroup. Lastly, only patients aged six months or less presented with significantly increased concentration of IL-8 and MMP-7. CONCLUSION: Non-obstructive cases are reported here to accompany significantly higher CSF cytokine and MMP protein levels compared to obstructive cases for IL-10, IL-6, IL-8, MMP-7 and MMP-9. A closer examination of the definition of obstruction and the role neuroinflammation plays in creating shunt obstruction in hydrocephalic patients is suggested.


Assuntos
Derivações do Líquido Cefalorraquidiano , Citocinas/líquido cefalorraquidiano , Falha de Equipamento , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/cirurgia , Inflamação/líquido cefalorraquidiano , Metaloproteinases da Matriz/líquido cefalorraquidiano , Adolescente , Biomarcadores/líquido cefalorraquidiano , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Avaliação de Resultados em Cuidados de Saúde
13.
Neurol India ; 69(Supplement): S268-S274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35102976

RESUMO

Hydrocephalus is a neurological disorder with an incidence of 80-125 per 100,000 live births in the United States. The molecular pathogenesis of this multidimensional disorder is complex and has both genetic and environmental influences. This review aims to discuss the genetic and molecular alterations described in human hydrocephalus, from well-characterized, heritable forms of hydrocephalus (e.g., X-linked hydrocephalus from L1CAM variants) to those affecting cilia motility and other complex pathologies such as neural tube defects and Dandy-Walker syndrome. Ventricular zone disruption is one key pattern among congenital and acquired forms of hydrocephalus, with abnormalities in cadherins, which mediate neuroepithelium/ependymal cell junctions and contribute to the pathogenesis and severity of the disease. Given the relationship between hydrocephalus pathogenesis and neurodevelopment, future research should elucidate the genetic and molecular mechanisms that regulate ventricular zone integrity and stem cell biology.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Hidrocefalia , Defeitos do Tubo Neural , Aqueduto do Mesencéfalo , Humanos , Hidrocefalia/genética
14.
J Biomed Mater Res B Appl Biomater ; 109(8): 1177-1187, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33331125

RESUMO

A major cause of hydrocephalus shunt failure is cell adhesion and obstruction of shunt catheter holes. An estimated 50% of pediatric shunts fail in the first 2 years of insertion, decreasing cell attachment and catheter obstruction can prolong the lifetime and effectiveness of the device. From previous studies, it was shown that treatment of the polydimethylsiloxane (PDMS) surface of a standard catheter with an N-acetyl-cysteine (NAC/1-ethyl-3-(3-dimethylanimopropyl)carbodiimide hydrochloride/N-hydroxysuccinimide) layer increases the wettability of the surface and has been shown to decrease cell adhesion. Other studies indicate that NAC's antioxidant behavior induces glutathione and in turn modulates cell inflammatory pathways. The current study explores the longevity of the NAC coating from the surface of the catheter over time and shows its effect on valve function. Using SEM imaging, contact angle testing, and nanodrop spectrophotometry, this release was quantified for shunt samples incubated for 0, 10, 30, 60, and 90 days. Contact angle showed a significant increase in wettability of the surface when shunts were treated with NAC, confirming successful surface modification. Pressure assays determined that if the coating is release it had no detrimental downstream effects, such as on the shunt valve mechanism. SEM imaging revealed slight deformations in surface coating indicative of salt deposition on the modified shunt samples, while nanodrop spectrophotometry and contact angle data trends suggested some discharge of the NAC coating from the catheter surfaces. The effects of NAC on cell activity may transform the way hydrocephalus is treated in the future by increasing the longevity of the shunt to protect from obstruction.


Assuntos
Acetilcisteína/química , Catéteres , Dimetilpolisiloxanos/química , Hidrocefalia/cirurgia , Derivações do Líquido Cefalorraquidiano , Humanos
15.
Fluids Barriers CNS ; 17(1): 46, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690048

RESUMO

BACKGROUND: Severe intraventricular hemorrhage (IVH) is one of the most devastating neurological complications in preterm infants, with the majority suffering long-term neurological morbidity and up to 50% developing post-hemorrhagic hydrocephalus (PHH). Despite the importance of this disease, its cytopathological mechanisms are not well known. An in vitro model of IVH is required to investigate the effects of blood and its components on the developing ventricular zone (VZ) and its stem cell niche. To address this need, we developed a protocol from our accepted in vitro model to mimic the cytopathological conditions of IVH in the preterm infant. METHODS: Maturing neuroepithelial cells from the VZ were harvested from the entire lateral ventricles of wild type C57BL/6 mice at 1-4 days of age and expanded in proliferation media for 3-5 days. At confluence, cells were re-plated onto 24-well plates in differentiation media to generate ependymal cells (EC). At approximately 3-5 days, which corresponded to the onset of EC differentiation based on the appearance of multiciliated cells, phosphate-buffered saline for controls or syngeneic whole blood for IVH was added to the EC surface. The cells were examined for the expression of EC markers of differentiation and maturation to qualitatively and quantitatively assess the effect of blood exposure on VZ transition from neuroepithelial cells to EC. DISCUSSION: This protocol will allow investigators to test cytopathological mechanisms contributing to the pathology of IVH with high temporal resolution and query the impact of injury to the maturation of the VZ. This technique recapitulates features of normal maturation of the VZ in vitro, offering the capacity to investigate the developmental features of VZ biogenesis.


Assuntos
Hemorragia Cerebral Intraventricular/patologia , Doenças do Prematuro/patologia , Ventrículos Laterais/patologia , Células Neuroepiteliais/patologia , Animais , Diferenciação Celular , Células Cultivadas , Técnicas In Vitro , Recém-Nascido Prematuro , Camundongos Endogâmicos C57BL , Modelos Neurológicos
16.
Fluids Barriers CNS ; 17(1): 45, 2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32682437

RESUMO

BACKGROUND: Pediatric hydrocephalus is a devastating and costly disease. The mainstay of treatment is still surgical shunting of cerebrospinal fluid (CSF). These shunts fail at a high rate and impose a significant burden on patients, their families and society. The relationship between clinical decision making and shunt failure is poorly understood and multifaceted, but catheter occlusion remains the most frequent cause of shunt complications. In order to investigate factors that affect shunt failure, we have established the Wayne State University (WSU) shunt biobank. METHODS: To date, four hospital centers have contributed various components of failed shunts and CSF from patients diagnosed with hydrocephalus before adulthood. The hardware samples are transported in paraformaldehyde and transferred to phosphate-buffered saline with sodium azide upon deposit into the biobank. Once in the bank, they are then available for study. Informed consent is obtained by the local center before corresponding clinical data are entered into a REDCap database. Data such as hydrocephalus etiology and details of shunt revision history. All data are entered under a coded identifier. RESULTS: 293 shunt samples were collected from 228 pediatric patients starting from May 2015 to September 2019. We saw a significant difference in the number of revisions per patient between centers (Kruskal-Wallis H test, p value < 0.001). The leading etiology at all centers was post-hemorrhagic hydrocephalus, a fisher's exact test showed there to be statistically significant differences in etiology between center (p = 0.01). Regression showed age (p < 0.01), race (p = 0.038) and hospital-center (p < 0.001) to explain significant variance in the number of revisions. Our model accounted for 31.9% of the variance in revisions. Generalized linear modeling showed hydrocephalus etiology (p < 0.001), age (p < 0.001), weight and physician (p < 0.001) to impact the number of ventricular obstructions. CONCLUSION: The retrospective analysis identified that differences exist between currently enrolled centers, although further work is needed before clinically actionable recommendations can be made. Moreover, the variables collected from this chart review explain a meaningful amount of variance in the number of revision surgeries. Future work will expand on the contribution of different site-specific and patient-specific factors to identify potential cause and effect relationships.


Assuntos
Bancos de Espécimes Biológicos , Derivações do Líquido Cefalorraquidiano , Líquido Cefalorraquidiano , Falha de Equipamento , Hidrocefalia , Adolescente , Adulto , Bancos de Espécimes Biológicos/organização & administração , Criança , Pré-Escolar , Feminino , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/cirurgia , Lactente , Masculino , Estudos Multicêntricos como Assunto , Reoperação , Estudos Retrospectivos , Adulto Jovem
17.
Cell Tissue Res ; 381(1): 141-161, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32065263

RESUMO

Foetal onset hydrocephalus is a disease starting early in embryonic life; in many cases it results from a cell junction pathology of neural stem (NSC) and neural progenitor (NPC) cells forming the ventricular zone (VZ) and sub-ventricular zone (SVZ) of the developing brain. This pathology results in disassembling of VZ and loss of NSC/NPC, a phenomenon known as VZ disruption. At the cerebral aqueduct, VZ disruption triggers hydrocephalus while in the telencephalon, it results in abnormal neurogenesis. This may explain why derivative surgery does not cure hydrocephalus. NSC grafting appears as a therapeutic opportunity. The present investigation was designed to find out whether this is a likely possibility. HTx rats develop hereditary hydrocephalus; 30-40% of newborns are hydrocephalic (hyHTx) while their littermates are not (nHTx). NSC/NPC from the VZ/SVZ of nHTx rats were cultured into neurospheres that were then grafted into a lateral ventricle of 1-, 2- or 7-day-old hyHTx. Once in the cerebrospinal fluid, neurospheres disassembled and the freed NSC homed at the areas of VZ disruption. A population of homed cells generated new multiciliated ependyma at the sites where the ependyma was missing due to the inherited pathology. Another population of NSC homed at the disrupted VZ differentiated into ßIII-tubulin+ spherical cells likely corresponding to neuroblasts that progressed into the parenchyma. The final fate of these cells could not be established due to the protocol used to label the grafted cells. The functional outcomes of NSC grafting in hydrocephalus remain open. The present study establishes an experimental paradigm of NSC/NPC therapy of foetal onset hydrocephalus, at the etiologic level that needs to be further explored with more analytical methodologies.


Assuntos
Hidrocefalia/terapia , Células-Tronco Neurais/transplante , Animais , Diferenciação Celular , Proliferação de Células , Neurogênese , Ratos
18.
J Neurosurg Pediatr ; : 1-8, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31323624

RESUMO

OBJECTIVE: Traditionally, diffusion MRI (dMRI) has been performed in parallel with high-resolution conventional MRI, which requires long scan times and may require sedation or general anesthesia in infants and young children. Conversely, fast brain MRI permits image acquisition without the need for sedation, although its short pulse sequences, susceptibility to motion artifact, and contrast resolution have limited its use to assessing ventricular size or major structural variations. Here, the authors demonstrate the feasibility of leveraging a 3-direction fast brain MRI protocol to obtain reliable dMRI measures. METHODS: Fast brain MRI with 3-direction dMRI was performed in infants and children before and after hydrocephalus treatment. Regions of interest in the posterior limbs of the internal capsules (PLICs) and the genu of the corpus callosum (gCC) were drawn on diffusion-weighted images, and mean diffusivity (MD) data were extracted. Ventricular size was determined by the frontal occipital horn ratio (FOHR). Differences between and within groups pre- and posttreatment, and FOHR-MD correlations were assessed. RESULTS: Of 40 patients who met inclusion criteria (median age 27.5 months), 15 (37.5%), 17 (42.5%), and 8 (20.0%) had posthemorrhagic hydrocephalus (PHH), congenital hydrocephalus (CH), or no intracranial abnormality (controls), respectively. A hydrocephalus group included both PHH and CH patients. Prior to treatment, the FOHR (p < 0.001) and PLIC MD (p = 0.027) were greater in the hydrocephalus group than in the controls. While the mean gCC MD in the hydrocephalus group (1.10 × 10-3 mm2/sec) was higher than that of the control group (0.98), the difference was not significant (p = 0.135). Following a median follow-up duration of 14 months, decreases in FOHR, PLIC MD, and gCC MD were observed in the hydrocephalus group and were similar to those in the control group (p = 0.107, p = 0.702, and p = 0.169, respectively). There were no correlations identified between FOHR and MDs at either time point. CONCLUSIONS: The utility of fast brain MRI can be extended beyond anatomical assessments to obtain dMRI measures. A reduction in PLIC and gCC MD to levels similar to those of controls was observed within 14 months following shunt surgery for hydrocephalus in PHH and CH infants. Further studies are required to assess the role of fast brain dMRI for assessing clinical outcomes in pediatric hydrocephalus patients.

19.
J Neuropathol Exp Neurol ; 77(9): 803-813, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30032242

RESUMO

Intraventricular hemorrhage (IVH) is the most common cause of pediatric hydrocephalus in North America but remains poorly understood. Cell junction-mediated ventricular zone (VZ) disruption and astrogliosis are associated with the pathogenesis of congenital, nonhemorrhagic hydrocephalus. Recently, our group demonstrated that VZ disruption is also present in preterm infants with IVH. On the basis of this observation, we hypothesized that blood triggers the loss of VZ cell junction integrity and related cytopathology. In order to test this hypothesis, we developed an in vitro model of IVH by applying syngeneic blood to cultured VZ cells obtained from newborn mice. Following blood treatment, cells were assayed for N-cadherin-dependent adherens junctions, ciliated ependymal cells, and markers of glial activation using immunohistochemistry and immunoblotting. After 24-48 hours of exposure to blood, VZ cell junctions were disrupted as determined by a significant reduction in N-cadherin expression (p < 0.05). This was also associated with significant decrease in multiciliated cells and increase in glial fibrillary acid protein-expressing cells (p < 0.05). These observations suggest that, in vitro, blood triggers VZ cell loss and glial activation in a pattern that mirrors the cytopathology of human IVH and supports the relevance of this in vitro model to define injury mechanisms.


Assuntos
Sangue , Hemorragia Cerebral Intraventricular/etiologia , Ventrículos Cerebrais/patologia , Junções Intercelulares/patologia , Neuroglia/patologia , Animais , Animais Recém-Nascidos , Caderinas/metabolismo , Caspase 3/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hidrocefalia , Técnicas In Vitro , Junções Intercelulares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Técnicas de Cultura de Órgãos , Ensaio de Radioimunoprecipitação
20.
Fluids Barriers CNS ; 15(1): 11, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587767

RESUMO

The Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop was held on July 25 and 26, 2016 at the National Institutes of Health. The workshop brought together a diverse group of researchers including pediatric neurosurgeons, neurologists, and neuropsychologists with scientists in the fields of brain injury and development, cerebrospinal and interstitial fluid dynamics, and the blood-brain and blood-CSF barriers. The goals of the workshop were to identify areas of opportunity in posthemorrhagic hydrocephalus research and encourage scientific collaboration across a diverse set of fields. This report details the major themes discussed during the workshop and research opportunities identified for posthemorrhagic hydrocephalus. The primary areas include (1) preventing intraventricular hemorrhage, (2) stopping primary and secondary brain damage, (3) preventing hydrocephalus, (4) repairing brain damage, and (5) improving neurodevelopment outcomes in posthemorrhagic hydrocephalus.


Assuntos
Hemorragia Cerebral/complicações , Hemorragia Cerebral/prevenção & controle , Hidrocefalia/etiologia , Hidrocefalia/prevenção & controle , Animais , Hemorragia Cerebral/fisiopatologia , Ensaios Clínicos como Assunto , Congressos como Assunto , Humanos , Hidrocefalia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA