Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
BMJ Open ; 14(1): e077768, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262654

RESUMO

INTRODUCTION: Globally, recognition is growing of the harmful impacts of high ambient temperatures (heat) on health in pregnant women and children. There remain, however, major evidence gaps on the extent to which heat increases the risks for adverse health outcomes, and how this varies between settings. Evidence gaps are especially large in Africa. We will conduct an individual participant data (IPD) meta-analysis to quantify the impacts of heat on maternal and child health in sub-Saharan Africa. A detailed understanding and quantification of linkages between heat, and maternal and child health is essential for developing solutions to this critical research and policy area. METHODS AND ANALYSIS: We will use IPD from existing, large, longitudinal trial and cohort studies, on pregnant women and children from sub-Saharan Africa. We will systematically identify eligible studies through a mapping review, searching data repositories, and suggestions from experts. IPD will be acquired from data repositories, or through collaboration with data providers. Existing satellite imagery, climate reanalysis data, and station-based weather observations will be used to quantify weather and environmental exposures. IPD will be recoded and harmonised before being linked with climate, environmental, and socioeconomic data by location and time. Adopting a one-stage and two-stage meta-analysis method, analytical models such as time-to-event analysis, generalised additive models, and machine learning approaches will be employed to quantify associations between exposure to heat and adverse maternal and child health outcomes. ETHICS AND DISSEMINATION: The study has been approved by ethics committees. There is minimal risk to study participants. Participant privacy is protected through the anonymisation of data for analysis, secure data transfer and restricted access. Findings will be disseminated through conferences, journal publications, related policy and research fora, and data may be shared in accordance with data sharing policies of the National Institutes of Health. PROSPERO REGISTRATION NUMBER: CRD42022346068.


Assuntos
Saúde da Criança , Clima , Feminino , Humanos , Gravidez , África , Ensaios Clínicos como Assunto , Análise de Dados , Metanálise como Assunto , Temperatura , Estados Unidos , Criança
2.
Environ Health Perspect ; 131(10): 104201, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37861803

RESUMO

BACKGROUND: Extracellular vesicles (EVs), membrane-bound particles containing a variety of RNA types, DNA, proteins, and other macromolecules, are now appreciated as an important means of communication between cells and tissues, both in normal cellular physiology and as a potential indicator of cellular stress, environmental exposures, and early disease pathogenesis. Extracellular signaling through EVs is a growing field of research for understanding fundamental mechanisms of health and disease and for the potential for biomarker discovery and therapy development. EVs are also known to play important roles in mediating the effects of exposure to environmental stress. OBJECTIVES: This seminar addresses the application of new tools and approaches for EV research, developed in part through the National Institutes of Health (NIH) Extracellular RNA Communication Program, and reflects presentations and discussions from a workshop held 27-28 September 2021 by the National Institute of Environmental Health Sciences (NIEHS) and the National Center for Advancing Translational Sciences (NCATS) on "Extracellular Vesicles, Exosomes, and Cell-Cell Signaling in Response to Environmental Stress." The panel of experts discussed current research on EVs and environmental exposures, highlighted recent advances in EV isolation and characterization, and considered research gaps and opportunities toward identifying and characterizing the roles for EVs in environmentally related diseases, as well as the current challenges and opportunities in this field. DISCUSSION: The authors discuss the application of new experimental models, particularly organ-on-chip (OOC) systems and in vitro approaches and how these have the potential to extend findings in population-based studies of EVs in exposure-related diseases. Given the complex challenges of identifying cell-specific EVs related to environmental exposures, as well as the general heterogeneity and variability in EVs in blood and other accessible biological samples, there is a critical need for rigorous reporting of experimental methods and validation studies. The authors note that these efforts, combined with cross-disciplinary approaches, would ensure that future research efforts in environmental health studies on EV biomarkers are rigorous and reproducible. https://doi.org/10.1289/EHP12980.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Biomarcadores/metabolismo , Exposição Ambiental , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , RNA/metabolismo
3.
Toxicol Sci ; 181(1): 3-12, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33677604

RESUMO

Environmental factors and gene-environment interactions modify the variable expressivity, progression, severity, and onset of some classic (monogenic) Mendelian-inherited genetic diseases. Cystic fibrosis, Huntington disease, Parkinson's disease, and sickle cell disease are examples of well-known Mendelian disorders that are influenced by exogenous exposures. Environmental factors may act by direct or indirect mechanisms to modify disease severity, timing, and presentation, including through epigenomic influences, protein misfolding, miRNA alterations, transporter activity, and mitochondrial effects. Because pathological features of early-onset Mendelian diseases can mimic later onset complex diseases, we propose that studies of environmental exposure vulnerabilities using monogenic model systems of rare Mendelian diseases have high potential to provide insight into complex disease phenotypes arising from multi-genetic/multi-toxicant interactions. Mendelian disorders can be modeled by homologous mutations in animal model systems with strong recapitulation of human disease etiology and natural history, providing an important advantage for study of these diseases. Monogenic high penetrant mutations are ideal for toxicant challenge studies with a wide variety of environmental stressors, because background genetic variability may be less able to alter the relatively strong phenotype driving disease-causing mutations. These models promote mechanistic understandings of gene-environment interactions and biological pathways relevant to both Mendelian and related sporadic complex disease outcomes by creating a sensitized background for relevant environmental risk factors. Additionally, rare disease communities are motivated research participants, creating the potential of strong research allies among rare Mendelian disease advocacy groups and disease registries and providing a variety of translational opportunities that are under-utilized in genetic or environmental health science.


Assuntos
Interação Gene-Ambiente , Doença de Parkinson , Animais , Humanos , Mutação , Fenótipo
4.
Neuropsychopharmacology ; 45(7): 1086-1096, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32109936

RESUMO

The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms-synaptic dysfunction, immune alterations, and gut-brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease.


Assuntos
Exposição Ambiental/efeitos adversos , Transtornos Mentais/etiologia , Humanos
5.
Front Genet ; 10: 1166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010175

RESUMO

The World Health Organization in 2016 estimated that over 20% of the global disease burden and deaths were attributed to modifiable environmental factors. However, data clearly characterizing the impact of environmental exposures and health endpoints in African populations is limited. To describe recent progress and identify important research gaps, we reviewed literature on environmental health research in African populations over the last decade, as well as research incorporating both genomic and environmental factors. We queried PubMed for peer-reviewed research articles, reviews, or books examining environmental exposures and health outcomes in human populations in Africa. Searches utilized medical subheading (MeSH) terms for environmental exposure categories listed in the March 2018 US National Report on Human Exposure to Environmental Chemicals, which includes chemicals with worldwide distributions. Our search strategy retrieved 540 relevant publications, with studies evaluating health impacts of ambient air pollution (n=105), indoor air pollution (n = 166), heavy metals (n = 130), pesticides (n = 95), dietary mold (n = 61), indoor mold (n = 9), per- and polyfluoroalkyl substances (PFASs, n = 0), electronic waste (n = 9), environmental phenols (n = 4), flame retardants (n = 8), and phthalates (n = 3), where publications could belong to more than one exposure category. Only 23 publications characterized both environmental and genomic risk factors. Cardiovascular and respiratory health endpoints impacted by air pollution were comparable to observations in other countries. Air pollution exposures unique to Africa and some other resource limited settings were dust and specific occupational exposures. Literature describing harmful health effects of metals, pesticides, and dietary mold represented a context unique to Africa. Studies of exposures to phthalates, PFASs, phenols, and flame retardants were very limited. These results underscore the need for further focus on current and emerging environmental and chemical health risks as well as better integration of genomic and environmental factors in African research studies. Environmental exposures with distinct routes of exposure, unique co-exposures and co-morbidities, combined with the extensive genomic diversity in Africa may lead to the identification of novel mechanisms underlying complex disease and promising potential for translation to global public health.

6.
Environ Health Perspect ; 126(7): 074501, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30024381

RESUMO

SUMMARY: The National Institute of Environmental Health Sciences (NIEHS) introduces a new translational research framework that builds upon previous biomedical models to create a more comprehensive and integrated environmental health paradigm. The framework was developed as a graphical construct that illustrates the complexity of designing, implementing, and tracking translational research in environmental health. We conceptualize translational research as a series of concentric rings and nodes, defining "translation" as movement either from one ring to another or between nodes on a ring. A "Fundamental Questions" ring expands upon the research described in other frameworks as "basic" to include three interrelated concepts critical to basic science research: research questions, experimental settings, and organisms. This feature enables us to capture more granularity and thus facilitates an approach for categorizing translational research and its growth over time. We anticipate that the framework will help researchers develop compelling long-term translational research stories and accelerate public health impacts by clearly mapping out opportunities for collaborations. By using this paradigm, researchers everywhere will be better positioned to design research programs, identify research partners based on cross-disciplinary research needs, identify stakeholders who are likely to use the research for environmental decision-making and intervention, and track progress toward common goals. https://doi.org/10.1289/EHP3657.


Assuntos
Saúde Ambiental/métodos , National Institute of Environmental Health Sciences (U.S.) , Pesquisa Translacional Biomédica/métodos , Saúde Ambiental/normas , Humanos , Saúde Pública/métodos , Saúde Pública/normas , Pesquisa Translacional Biomédica/normas , Estados Unidos
9.
Environ Health Perspect ; 125(8): 086002, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28886592

RESUMO

BACKGROUND: This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene-environment interactions in human disease and to inform human health risk assessment. OBJECTIVES: This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. METHODS: This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. DISCUSSION: These unique resources have the potential to be powerful tools for generating hypotheses related to gene-environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. CONCLUSIONS: These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274.


Assuntos
Exposição Ambiental/análise , Predisposição Genética para Doença/epidemiologia , Animais , Saúde Ambiental , Humanos , Camundongos , Medição de Risco , Testes de Toxicidade/métodos , Testes de Toxicidade/normas
10.
Cancer Epidemiol Biomarkers Prev ; 26(9): 1370-1380, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28710076

RESUMO

A growing number and increasing diversity of factors are available for epidemiological studies. These measures provide new avenues for discovery and prevention, yet they also raise many challenges for adoption in epidemiological investigations. Here, we evaluate 1) designs to investigate diseases that consider heterogeneous and multidimensional indicators of exposure and behavior, 2) the implementation of numerous methods to capture indicators of exposure, and 3) the analytical methods required for discovery and validation. We find that case-control studies have provided insights into genetic susceptibility but are insufficient for characterizing complex effects of environmental factors on disease development. Prospective and two-phase designs are required but must balance extended data collection with follow-up of study participants. We discuss innovations in assessments including the microbiome; mass spectrometry and metabolomics; behavioral assessment; dietary, physical activity, and occupational exposure assessment; air pollution monitoring; and global positioning and individual sensors. We claim the the availability of extensive correlated data raises new challenges in disentangling specific exposures that influence cancer risk from among extensive and often correlated exposures. In conclusion, new high-dimensional exposure assessments offer many new opportunities for environmental assessment in cancer development. Cancer Epidemiol Biomarkers Prev; 26(9); 1370-80. ©2017 AACR.


Assuntos
Exposição Ambiental/análise , Exposição Ocupacional/análise , Feminino , Humanos , Masculino , Microbiota , Medição de Risco
11.
Mutat Res ; 800-802: 14-28, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28458064

RESUMO

The rise of advanced technologies for characterizing human populations at the molecular level, from sequence to function, is shifting disease prevention paradigms toward personalized strategies. Because minimization of adverse outcomes is a key driver for treatment decisions for diseased populations, developing personalized therapy strategies represent an important dimension of both precision medicine and personalized prevention. In this commentary, we highlight recently developed enabling technologies in the field of DNA damage, DNA repair, and mutagenesis. We propose that omics approaches and functional assays can be integrated into population studies that fuse basic, translational and clinical research with commercial expertise in order to accelerate personalized prevention and treatment of cancer and other diseases linked to aberrant responses to DNA damage. This collaborative approach is generally applicable to efforts to develop data-driven, individualized prevention and treatment strategies for other diseases. We also recommend strategies for maximizing the use of biological samples for epidemiological studies, and for applying emerging technologies to clinical applications.


Assuntos
Neoplasias/diagnóstico , Neoplasias/prevenção & controle , Medicina de Precisão , Dano ao DNA , Reparo do DNA , Humanos , Mutagênese
13.
Toxicol Pathol ; 34(2): 187-98, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16546942

RESUMO

Mutations in both p53 and BRCA2 are commonly seen together in human tumors suggesting that the loss of both genes enhances tumor development. To elucidate this interaction in an animal model, mice lacking the carboxy terminal domain of Brca2 were crossed with p53 heterozygous mice. Females from this intercross were then irradiated with an acute dose of 5 Gy ionizing radiation at 5 weeks of age and compared to nonirradiated controls. We found decreased survival and timing of tumor onsets, and significantly higher overall tumor incidences and prevalence of particular tumors, including stomach tumors and squamous cell carcinomas, associated with the homozygous loss of Brca2, independent of p53 status. The addition of a p53 mutation had a further impact on overall survival, incidence of osteosarcomas and stomach tumors, and tumor latency. The spectrum of tumors observed for this Brca2 germline mouse model suggest that it faithfully recapitulates some human disease phenotypes associated with BRCA2 loss. In addition, these findings include extensive in vivo data demonstrating that germline Brca2 and p53 mutations cooperatively affect animal survivals, tumor susceptibilities, and tumor onsets.


Assuntos
Proteína BRCA2/genética , Genes p53 , Mutação em Linhagem Germinativa , Neoplasias Induzidas por Radiação/genética , Neoplasias/genética , Radiação Ionizante , Animais , Proteína BRCA2/fisiologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/fisiopatologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/fisiopatologia , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neoplasias/fisiopatologia , Osteossarcoma/genética , Osteossarcoma/fisiopatologia , Fenótipo , Neoplasias Gástricas/genética , Neoplasias Gástricas/fisiopatologia , Taxa de Sobrevida , Fatores de Tempo
15.
Exp Toxicol Pathol ; 57(2): 105-15, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16325521

RESUMO

Appropriate balance between proliferation and apoptosis is critical for mammary gland development and is often altered during tumorigenesis. Carcinogens like radiation induce DNA damage and activate protective responses such as cell cycle arrest and apoptosis. We used mice carrying Brca2(-/-) and/or p53(-/-) mutations to evaluate the individual and combined effects of these genes on cell proliferation and apoptosis in the developing mammary gland. Mice were exposed to 5Gy of radiation or chamber exposure (controls) followed by injection with BrdU. Mammary glands were collected 6 h post-radiation exposure and evaluated for proliferation (BrdU) and apoptosis (TUNEL) in terminal end buds (TEB) and ducts. Under control conditions, the Brca2 mutation reduced proliferation and apoptosis in TEB but not ducts, whereas the p53 mutation reduced apoptosis in TEB and ducts but did not influence proliferation. Despite these alterations in proliferation and/or apoptosis, neither mutation, either individually or combined, significantly altered the overall balance between the two as measured by the proliferation to apoptosis ratio (growth index). Following irradiation, the Brca2 mutation had no significant effect on proliferation or apoptosis, whereas the p53 mutation resulted in reduced apoptosis in TEB and ducts but did not significantly influence proliferation. Neither mutation by itself altered the growth index in the TEB after irradiation although combined Brca2/p53 mutation caused significantly increased proliferation, reduced apoptosis, and an elevated growth index in TEB and ducts. These results reveal both independent and collaborative growth regulatory roles for Brca2 and p53 under normal and adverse environmental conditions. Additionally, we demonstrate the importance of gene-environment interactions by showing that Brca2- and p53-deficient mice can compensate for their genetic deficiencies under control conditions but not after exposure to radiation. We also demonstrate distinct spatial differences in the cellular functions of Brca2 and p53 and show that combined mutation of both genes is more detrimental than loss of either gene alone.


Assuntos
Genes BRCA2 , Genes p53 , Glândulas Mamárias Animais/efeitos da radiação , Mutação , Animais , Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Feminino , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
16.
Mol Carcinog ; 35(3): 103-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12410562

RESUMO

Mutations in the human BRCA2 breast cancer susceptibility gene are associated with increased risks of breast, ovarian, and other cancers. BRCA2 has been hypothesized to function in processes of DNA damage/breakage repair, cell proliferation, and apoptosis. These processes continually occur in the thymus during thymocyte development, and BRCA2 mRNA is highly expressed in thymus relative to most other organs. We therefore used the thymus as a model system to study BRCA2 expression and function. Quantitative reverse transcription polymerase chain reaction experiments showed that highly activated immature CD4(+) CD8(+) double-positive human thymocytes that exhibited high levels of proliferation and apoptosis had increased BRCA2 mRNA levels relative to other thymocyte subsets. BRCA2 mRNA levels were upregulated in thymocytes treated with the DNA-damaging agent etoposide. Only modest increases were associated with proliferation in human peripheral lymphocytes in response to concanavalin A (ConA) mitogen. Mice homozygous for a targeted mutation in Brca2 exon 27 (Brca2(Delta27/Delta27)) showed normal thymic architecture but had 18% decreased thymocyte cellularity compared with wild-type mice. Thymocytes from these Brca2(Delta27/Delta27) mice displayed decreased apoptosis in response to etoposide-induced DNA damage compared with wild-type thymocytes. These studies suggest that BRCA2 mRNA levels are modulated during DNA damage and may be important during apoptosis.


Assuntos
Proteína BRCA2/metabolismo , Timo/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/toxicidade , Apoptose , Proteína BRCA2/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Divisão Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Primers do DNA/química , Modelos Animais de Doenças , Etoposídeo/toxicidade , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Timo/imunologia , Timo/ultraestrutura , Regulação para Cima
17.
Breast Cancer Res ; 4(2): 54-7, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11879563

RESUMO

Brca1 is involved in multiple biological pathways including DNA damage repair, transcriptional regulation, and cell-cycle progression. A complex pattern of interactions of Brca1 with Trp53 has also emerged. Xu and coworkers found that haploid loss of Trp53 significantly reduces the embryonic lethality observed in mice with a homozygous in-frame deletion of Brca1 exon 11. They report that widespread apoptosis correlates with the embryonic lethality resulting from this homozygous delta11 Brca1 mutation. A mechanism responsible for Brca1-associated carcinogenesis is proposed. These experiments extend our knowledge of a complex Brca1/Trp53 relationship. However, the precise mechanisms through which Brca1 interacts with Trp53 to suppress mammary tumor formation have yet to be elucidated.


Assuntos
Proteína BRCA1/fisiologia , Genes BRCA1 , Genes Letais , Genes p53 , Neoplasias Mamárias Animais/etiologia , Neoplasias Mamárias Animais/genética , Animais , Apoptose/genética , Proteína BRCA1/genética , Ciclo Celular/genética , Feminino , Neoplasias Mamárias Animais/patologia , Camundongos , Mutação
18.
Cancer Res ; 62(4): 990-4, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11861370

RESUMO

Inherited mutations of the human BRCA2 gene confer increased risks for developing breast, ovarian, and several other cancers. Unlike previously described Brca2 knockout mice that display predominantly embryonic lethal phenotypes, we developed mice with a homozygous germ-line deletion of Brca2 exon 27 that exhibit a moderate decrease in perinatal viability and are fertile. We deleted this Brca2 COOH-terminal domain because it interacts directly with the Rad51 protein, contains a nuclear localization signal, and is required to maintain genomic stability in response to various types of DNA damage. These homozygous Brca2-mutant mice have a significantly increased overall tumor incidence and decreased survival compared with their heterozygous littermates. Virgin female mice homozygous for this Brca2 mutation also display an inhibition of ductal side branching in the mammary gland at 6 months of age. Given their substantial viability and cancer predisposition, these mutant mice will be useful to further define the role of the COOH-terminal Brca2 domain in tumorigenesis both in vivo and in vitro.


Assuntos
Genes BRCA2 , Neoplasias Experimentais/genética , Animais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Éxons/genética , Feminino , Deleção de Genes , Predisposição Genética para Doença , Endogamia , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/fisiologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/patologia , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA