Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biomacromolecules ; 23(9): 3960-3967, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35994316

RESUMO

Continued SARS-CoV-2 transmission among the human population has meant the evolution of the virus to produce variants of increased infectiousness and virulence, coined variants of concern (VOCs). The last wave of pandemic infections was driven predominantly by the delta VOC, but because of continued transmission and adaptive mutations, the more highly transmissible omicron variant emerged and is now dominant. However, due to waning immunity and emergence of new variants, vaccines alone cannot control the pandemic. The application of an antiviral coating to high-touch surfaces and physical barriers such as masks are an effective means to inactivate the virus and their spread. Here, we demonstrate an environmentally friendly water-borne polymer coating that can completely inactivate SARS-CoV-2 independent of the infectious variant. The polymer was designed to target the highly glycosylated spike protein on the virion surface and inactivate the virion by disruption of the viral membrane through a nano-mechanical process. Our findings show that, even with low amounts of coating on the surface (1 g/m2), inactivation of alpha, delta, and omicron VOCs and degradation of their viral genome were complete. Furthermore, our data shows that the polymer induces little to no skin sensitization in mice and is non-toxic upon oral ingestion in rats. We anticipate that our transparent polymer coating can be applied to face masks and many other surfaces to capture and inactivate the virus, aiding in the reduction of SARS-CoV-2 transmission and evolution of new variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Humanos , Camundongos , Polímeros , Ratos , SARS-CoV-2/genética , Vírion
2.
Viruses ; 14(4)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35458445

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 is having devastating effects on a global scale. Since common household disinfectants are often used to minimise the risk of infection in the home and work environment, we investigated the ability of some of these products to inactivate the virus. We tested generic brands of vinegar, bleach, and dishwashing detergent, as well as laboratory-grade acetic acid, sodium hypochlorite, and ethanol. Assays were conducted at room temperature (18-20 °C, 40% relative humidity), and two time points were used to reflect a quick wipe (30 s) and a brief soak (5 min). Vinegar, and its active ingredient, acetic acid, were completely ineffective at virus inactivation even when exposed to the virus at 90% v/v (a final concentration equivalent to 3.6% v/v acetic acid). In contrast, ethanol was capable of inactivating the virus at dilutions as low as 40% v/v. Dishwashing detergent effectively rendered SARS-CoV-2 inactive when diluted 100-fold (1% v/v). Bleach was found to be fully effective against SARS-CoV-2 at 0.21 g/L sodium hypochlorite after a 30 s exposure (1/200 dilution of commercial product). Given reports of infectious virus recovered from the surface of frozen packaging, we tested the persistence of infectiousness after multiple freeze-thaw cycles and found no change in infectious SARS-CoV-2 titre after seven freeze-thaw cycles. These results should help inform readers of how to effectively disinfect surfaces and objects that have potentially been contaminated with SARS-CoV-2 using common household chemicals.


Assuntos
COVID-19 , Desinfetantes , Ácido Acético/farmacologia , COVID-19/prevenção & controle , Detergentes/farmacologia , Desinfetantes/farmacologia , Etanol/farmacologia , Humanos , Pandemias , SARS-CoV-2 , Hipoclorito de Sódio/farmacologia
3.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055020

RESUMO

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


Assuntos
COVID-19/virologia , Mucosa Nasal/citologia , Mucosa Nasal/virologia , Técnicas de Cultura de Tecidos/métodos , Adolescente , Adulto , Enzima de Conversão de Angiotensina 2/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , SARS-CoV-2 , Internalização do Vírus
5.
J Biol Chem ; 297(6): 101362, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756886

RESUMO

The Nsp9 replicase is a conserved coronaviral protein that acts as an essential accessory component of the multi-subunit viral replication/transcription complex. Nsp9 is the predominant substrate for the essential nucleotidylation activity of Nsp12. Compounds specifically interfering with this viral activity would facilitate its study. Using a native mass-spectrometry-based approach to screen a natural product library for Nsp9 binders, we identified an ent-kaurane natural product, oridonin, capable of binding to purified SARS-CoV-2 Nsp9 with micromolar affinities. By determining the crystal structure of the Nsp9-oridonin complex, we showed that oridonin binds through a conserved site near Nsp9's C-terminal GxxxG-helix. In enzymatic assays, oridonin's binding to Nsp9 reduces its potential to act as substrate for Nsp12's Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain. We also showed using in vitro cellular assays oridonin, while cytotoxic at higher doses has broad antiviral activity, reducing viral titer following infection with either SARS-CoV-2 or, to a lesser extent, MERS-CoV. Accordingly, these preliminary findings suggest that the oridonin molecular scaffold may have the potential to be developed into an antiviral compound to inhibit the function of Nsp9 during coronaviral replication.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Diterpenos do Tipo Caurano/farmacologia , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , COVID-19/metabolismo , COVID-19/virologia , Chlorocebus aethiops , Diterpenos do Tipo Caurano/química , Humanos , Simulação de Acoplamento Molecular , Proteínas de Ligação a RNA/química , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Células Vero , Proteínas não Estruturais Virais/química
6.
PLoS Pathog ; 17(8): e1009800, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437657

RESUMO

Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNß production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNß-promoter activity, whereas all six genes induced a collapse in IFNß mRNA levels, corresponding with suppressed IFNß protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.


Assuntos
Interferon beta/metabolismo , SARS-CoV-2/imunologia , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Chlorocebus aethiops , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Humanos , Interferon beta/genética , Interferon beta/farmacologia , SARS-CoV-2/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Células Vero , Proteínas Virais/genética
7.
mSphere ; : e0031321, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133201

RESUMO

The COVID-19 pandemic has impacted and enforced significant restrictions within our societies, including the attendance of public and professional athletes in gyms. Liquid chalk is a commonly used accessory in gyms and is comprised of magnesium carbonate and alcohol that quickly evaporates on the hands to leave a layer of dry chalk. We investigated whether liquid chalk is an antiseptic against highly pathogenic human viruses, including SARS-CoV-2, influenza virus, and noroviruses. Chalk was applied before or after virus, inoculum and recovery of infectious virus was determined to mimic the use in the gym. We observed that addition of chalk before or after virus contact led to a significant reduction in recovery of infectious SARS-CoV-2 and influenza virus but had little impact on norovirus. These observations suggest that the use and application of liquid chalk can be an effective and suitable antiseptic for major sporting events, such as the Olympic Games. IMPORTANCE To restrict the potential transmission and infectivity of SARS-CoV-2, the use of liquid chalk has been a requirement in an active gym setting. However, its effectiveness has not been scientifically proven. Here, we show that the application of liquid chalk before or after virus inoculum significantly impacts recovery of infectious SARS-CoV-2 and influenza viruses but not noroviruses. Thus, our study has shown that the implementation and application of liquid chalk in communal social gym settings is effective in reducing the infectivity of respiratory viruses, and this supports the use of liquid chalk in major sporting events to restrict the impact of COVID-19 on our communities.

8.
Clin Transl Immunology ; 10(1): e1242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532071

RESUMO

Older individuals exhibit a diminished ability to respond to and clear respiratory pathogens and, as such, experience a higher rate of lung infections with a higher mortality rate. It is unclear why respiratory pathogens impact older people disproportionately. Using human lung tissue from donors aged 22-68 years, we assessed how the immune cell landscape in lungs changes throughout life and investigated how these immune cells respond following in vitro exposure to influenza virus and SARS-CoV-2, two clinically relevant respiratory viruses. While the frequency of most immune cell subsets profiled in the human lung remained stable with age, memory CD8+ T cells declined, with the tissue-resident memory (Trm) CD8+ T-cell subset being most susceptible to age-associated attrition. Infection of lung tissue with influenza virus resulted in an age-associated attenuation in the antiviral immune response, with aged donors producing less type I interferon (IFN), GM-CSF and IFNγ, the latter correlated with a reduction of IFNγ-producing memory CD8+ T cells. In contrast, irrespective of donor age, exposure of human lung cells to SARS-CoV-2, a pathogen for which all donors were immunologically naïve, did not trigger activation of local immune cells and did not result in the induction of an early IFN response. Our findings show that the attrition of tissue-bound pathogen-specific Trm in the lung that occurs with advanced age, or their absence in immunologically naïve individuals, results in a diminished early antiviral immune response which creates a window of opportunity for respiratory pathogens to gain a greater foothold.

9.
Front Microbiol ; 10: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761095

RESUMO

With the constant threat of emergence of a novel influenza virus pandemic, there must be continued evaluation of the molecular mechanisms that contribute to virulence. Although the influenza A virus surface glycoprotein neuraminidase (NA) has been studied mainly in the context of its role in viral release from cells, accumulating evidence suggests it plays an important, multifunctional role in virus infection and fitness. This review investigates the various structural features of NA, linking these with functional outcomes in viral replication. The contribution of evolving NA activity to viral attachment, entry and release of virions from infected cells, and maintenance of functional balance with the viral hemagglutinin are also discussed. Greater insight into the role of this important antiviral drug target is warranted.

10.
Antiviral Res ; 148: 32-42, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29097227

RESUMO

The innate immune system provides the host with both a dynamic barrier to prevent infection and a means to which rapid anti-microbial responses can be mounted. The inflammasome pathway is a critical host early response mechanism that enables detection of pathogens and initiates production of inflammatory cytokines, inducing recruitment of effector cells to the site of infection. The complete mechanism of inflammasome activation requires two signals: an initial priming step upon detection of pathogen, followed by activation of intracellular pattern recognition receptors critical to the formation of the inflammasome complex. The inflammasome complex is made of intracellular multiprotein oligomers which includes a sensor protein such as the nucleotide-binding oligomerization domain (NOD) like receptor proteins (NLRP), and an adapter protein, ASC, which critically activates pro-caspase-1. The mature caspase-1 then proteolytically cleaves cytosolic pro-IL-1ß and pro-IL-18, which are then secreted as inflammatory cytokines that activate the inflammatory arm of the immune response to infection. Active caspase-1 also results in pyroptosis, which is a form of cell death triggered by inflammation. The induction and activation of IL-1ß and IL-18 are considered critical signatures for inflammasome activation. With focus upon influenza A virus infection, this review will address present knowledge on the mechanisms of inflammasome complex activation, particularly how the viral components modulate activation of the cytosolic NOD-like receptor protein-3 (NLRP3)-dependent inflammasome complex. We also discuss potential therapeutic strategies that target the inflammasome to ameliorate illness, as well as novel methods of vaccination that target inflammasome stimulation with the aim to increase efficacy.


Assuntos
Inflamassomos/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Imunidade Adaptativa , Animais , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Influenza Humana/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia
11.
J Biol Chem ; 292(3): 826-836, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27913620

RESUMO

The emergence of avian H7N9 influenza A virus in humans with associated high mortality has highlighted the threat of a potential pandemic. Fatal H7N9 infections are characterized by hyperinflammation and increased cellular infiltrates in the lung. Currently there are limited therapies to address the pathologies associated with H7N9 infection and the virulence factors that contribute to these pathologies. We have found that PB1-F2 derived from H7N9 activates the NLRP3 inflammasome and induces lung inflammation and cellular recruitment that is NLRP3-dependent. We have also shown that H7N9 and A/Puerto Rico/H1N1 (PR8)PB1-F2 peptide treatment induces significant mitochondrial reactive oxygen production, which contributes to NLRP3 activation. Importantly, treatment of cells or mice with the specific NLRP3 inhibitor MCC950 significantly reduces IL-1ß maturation, lung cellular recruitment, and cytokine production. Together, these results suggest that PB1-F2 from H7N9 avian influenza A virus may be a major contributory factor to disease pathophysiology and excessive inflammation characteristic of clinical infections and that targeting the NLRP3 inflammasome may be an effective means to reduce the inflammatory burden associated with H7N9 infections.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções por Orthomyxoviridae/imunologia , Peptídeos/imunologia , Proteínas Virais/imunologia , Animais , Linhagem Celular Transformada , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Indenos , Inflamação/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Mitocôndrias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia , Sulfonamidas , Sulfonas/farmacologia
12.
Sci Rep ; 6: 27912, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283237

RESUMO

The inflammasome NLRP3 is activated by pathogen associated molecular patterns (PAMPs) during infection, including RNA and proteins from influenza A virus (IAV). However, chronic activation by danger associated molecular patterns (DAMPs) can be deleterious to the host. We show that blocking NLRP3 activation can be either protective or detrimental at different stages of lethal influenza A virus (IAV). Administration of the specific NLRP3 inhibitor MCC950 to mice from one day following IAV challenge resulted in hypersusceptibility to lethality. In contrast, delaying treatment with MCC950 until the height of disease (a more likely clinical scenario) significantly protected mice from severe and highly virulent IAV-induced disease. These findings identify for the first time that NLRP3 plays a detrimental role later in infection, contributing to IAV pathogenesis through increased cytokine production and lung cellular infiltrates. These studies also provide the first evidence identifying NLRP3 inhibition as a novel therapeutic target to reduce IAV disease severity.


Assuntos
Vírus da Influenza A Subtipo H3N2/patogenicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Compostos de Sulfonilureia/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/análise , Ensaio de Imunoadsorção Enzimática , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Inflamação/prevenção & controle , Leucócitos/citologia , Leucócitos/imunologia , Leucócitos/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/patologia , Taxa de Sobrevida
13.
Vaccine ; 34(9): 1172-9, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26826545

RESUMO

Influenza viruses are promising mucosal vaccine vectors for HIV but their use has been limited by difficulties in engineering the expression of large amounts of foreign protein. We developed recombinant influenza viruses incorporating the HIV-1 p24 gag capsid into the NS-segment of PR8 (H1N1) and X31 (H3N2) influenza viruses with the use of multiple 2A ribosomal skip sequences. Despite the insertion of a sizable HIV-1 gene into the influenza genome, recombinant viruses were readily rescued to high titers. Intracellular expression of p24 capsid was confirmed by in vitro infection assays. The recombinant influenza viruses were subsequently tested as mucosal vaccines in BALB/c mice. Recombinant viruses were attenuated and safe in immunized mice. Systemic and mucosal HIV-specific CD8 T-cell responses were elicited in mice that were immunized via intranasal route with a prime-boost regimen. Isolated HIV-specific CD8 T-cells displayed polyfunctional cytokine and degranulation profiles. Mice boosted via intravaginal route induced recall responses from the distal lung mucosa and developed heightened HIV-specific CD8 T-cell responses in the vaginal mucosa. These findings demonstrate the potential utility of recombinant influenza viruses as vaccines for mucosal immunity against HIV-1 infection.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteína do Núcleo p24 do HIV/imunologia , Imunidade nas Mucosas , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Animais , Linhagem Celular , Feminino , Engenharia Genética , HIV-1 , Humanos , Imunização Secundária , Pulmão/imunologia , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Vagina/imunologia
14.
Front Immunol ; 6: 419, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347742

RESUMO

During the 1918 influenza pandemic, healthy young adults unusually succumbed to infection and were considered more vulnerable than young children and the elderly. The pathogenesis of this pandemic in the young adult population remains poorly understood. As this population is normally the least likely to die during seasonal influenza outbreaks, thought to be due to their appropriate pre-existing and robust immune responses protecting them from infection, we sought to review existing literature for immunological reasons for excessive mortality during the 1918 pandemic. We propose the novelty of the H1N1 pandemic virus to an H1N1 naïve immune system, the virulence of this virus, and dysfunctional host inflammatory and immunological responses, shaped by past influenza infections could have each contributed to their overall susceptibility. Additionally, in the young adult population, pre-exposure to past influenza infection of different subtypes, such as a H3N8 virus, during their infancy in 1889-1892, may have shaped immunological responses and enhanced vulnerability via humoral immunity effects with cross-reactive or non-neutralizing antibodies; excessive and/or ineffective cellular immunity from memory T lymphocytes; and innate dysfunctional inflammation. Multiple mechanisms likely contributed to the increased young adult mortality in 1918 and are the focus of this review.

15.
PLoS Pathog ; 9(5): e1003392, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737748

RESUMO

The ability for a host to recognize infection is critical for virus clearance and often begins with induction of inflammation. The PB1-F2 of pathogenic influenza A viruses (IAV) contributes to the pathophysiology of infection, although the mechanism for this is unclear. The NLRP3-inflammasome has been implicated in IAV pathogenesis, but whether IAV virulence proteins can be activators of the complex is unknown. We investigated whether PB1-F2-mediated activation of the NLRP3-inflammasome is a mechanism contributing to overt inflammatory responses to IAV infection. We show PB1-F2 induces secretion of pyrogenic cytokine IL-1ß by activating the NLRP3-inflammasome, contributing to inflammation triggered by pathogenic IAV. Compared to infection with wild-type virus, mice infected with reverse engineered PB1-F2-deficient IAV resulted in decreased IL-1ß secretion and cellular recruitment to the airways. Moreover, mice exposed to PB1-F2 peptide derived from pathogenic IAV had enhanced IL-1ß secretion compared to mice exposed to peptide derived from seasonal IAV. Implicating the NLRP3-inflammasome complex specifically, we show PB1-F2 derived from pathogenic IAV induced IL-1ß secretion was Caspase-1-dependent in human PBMCs and NLRP3-dependent in mice. Importantly, we demonstrate PB1-F2 is incorporated into the phagolysosomal compartment, and upon acidification, induces ASC speck formation. We also show that high molecular weight aggregated PB1-F2, rather than soluble PB1-F2, induces IL-1ß secretion. Furthermore, NLRP3-deficient mice exposed to PB1-F2 peptide or infected with PB1-F2 expressing IAV were unable to efficiently induce the robust inflammatory response as observed in wild-type mice. In addition to viral pore forming toxins, ion channel proteins and RNA, we demonstrate inducers of NLRP3-inflammasome activation may include disordered viral proteins, as exemplified by PB1-F2, acting as host pathogen 'danger' signals. Elucidating immunostimulatory PB1-F2 mediation of NLRP3-inflammasome activation is a major step forward in our understanding of the aetiology of disease attributable to exuberant inflammatory responses to IAV infection.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Proteínas Virais/imunologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular Transformada , Feminino , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Inflamação/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/fisiopatologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/imunologia
16.
PLoS Pathog ; 9(3): e1003238, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555251

RESUMO

Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. To address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.


Assuntos
Coinfecção , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/complicações , Infecções Pneumocócicas/complicações , Streptococcus pneumoniae/imunologia , Animais , Coinfecção/microbiologia , Coinfecção/fisiopatologia , Coinfecção/virologia , Feminino , Vírus da Influenza A Subtipo H1N1/patogenicidade , Cinética , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Teóricos , Infecções por Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/patogenicidade , Fatores de Tempo
17.
J Virol ; 85(23): 12324-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937639

RESUMO

The influenza A virus protein PB1-F2 has been linked to the pathogenesis of both primary viral and secondary bacterial infections. H3N2 viruses have historically expressed full-length PB1-F2 proteins with either proinflammatory (e.g., from influenza A/Hong Kong/1/1968 virus) or noninflammatory (e.g., from influenza A/Wuhan/359/1995 virus) properties. Using synthetic peptides derived from the active C-terminal portion of the PB1-F2 protein from those two viruses, we mapped the proinflammatory domain to amino acid residues L62, R75, R79, and L82 and then determined the role of that domain in H3N2 influenza virus pathogenicity. PB1-F2-derived peptides containing that proinflammatory motif caused significant morbidity, mortality, and pulmonary inflammation in mice, manifesting as increased acute lung injury and the presence of proinflammatory cytokines and inflammatory cells in the lungs compared to peptides lacking this motif, and better supported bacterial infection with Streptococcus pneumoniae. Infections of mice with an otherwise isogenic virus engineered to contain this proinflammatory sequence in PB1-F2 demonstrated increased morbidity resulting from primary viral infections and enhanced development of secondary bacterial pneumonia. The presence of the PB1-F2 noninflammatory (P62, H75, Q79, and S82) sequence in the wild-type virus mediated an antibacterial effect. These data suggest that loss of the inflammatory PB1-F2 phenotype that supports bacterial superinfection during adaptation of H3N2 viruses to humans, coupled with acquisition of antibacterial activity, contributes to the relatively diminished frequency of severe infections seen with seasonal H3N2 influenza viruses in recent decades compared to their first 2 decades of circulation.


Assuntos
Vírus da Influenza A Subtipo H3N2/patogenicidade , Infecções por Orthomyxoviridae/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Infecções Pneumocócicas/prevenção & controle , Pneumonia/prevenção & controle , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Rim/citologia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Infecções por Orthomyxoviridae/etiologia , Infecções por Orthomyxoviridae/patologia , Fragmentos de Peptídeos/imunologia , Infecções Pneumocócicas/etiologia , Infecções Pneumocócicas/patologia , Pneumonia/etiologia , Pneumonia/patologia , Homologia de Sequência de Aminoácidos , Streptococcus pneumoniae/patogenicidade , Replicação Viral
18.
PLoS Comput Biol ; 7(2): e1001081, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21379324

RESUMO

Relatively little is known about the viral factors contributing to the lethality of the 1918 pandemic, although its unparalleled virulence was likely due in part to the newly discovered PB1-F2 protein. This protein, while unnecessary for replication, increases apoptosis in monocytes, alters viral polymerase activity in vitro, enhances inflammation and increases secondary pneumonia in vivo. However, the effects the PB1-F2 protein have in vivo remain unclear. To address the mechanisms involved, we intranasally infected groups of mice with either influenza A virus PR8 or a genetically engineered virus that expresses the 1918 PB1-F2 protein on a PR8 background, PR8-PB1-F2(1918). Mice inoculated with PR8 had viral concentrations peaking at 72 hours, while those infected with PR8-PB1-F2(1918) reached peak concentrations earlier, 48 hours. Mice given PR8-PB1-F2(1918) also showed a faster decline in viral loads. We fit a mathematical model to these data to estimate parameter values. The model supports a higher viral production rate per cell and a higher infected cell death rate with the PR8-PB1-F2(1918) virus. We discuss the implications these mechanisms have during an infection with a virus expressing a virulent PB1-F2 on the possibility of a pandemic and on the importance of antiviral treatments.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Modelos Biológicos , Infecções por Orthomyxoviridae/virologia , Proteínas Virais/biossíntese , Replicação Viral/genética , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/patogenicidade , Cinética , Modelos Lineares , Pulmão/virologia , Camundongos , Pandemias , Carga Viral , Proteínas Virais/genética , Replicação Viral/fisiologia
19.
J Infect Dis ; 203(6): 880-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21278211

RESUMO

Superinfections from Staphylococcus aureus following influenza are an increasing concern. We assessed several laboratory and clinical strains in a mouse coinfection model with influenza virus. A methicillin-resistant USA300 clone and several recent clinical strains from patients with necrotizing pneumonia caused high mortality following influenza virus infection in mice. Both viral and bacterial lung titers were enhanced during coinfections compared with single infections. However, differences in titers did not correspond with differences in disease outcomes in a comparison of superinfections from a highly pathogenic strain with those from a poorly pathogenic strain. These strains did differ, however, in expression of Panton-Valentine leukocidin and in the degree of inflammatory lung damage each engendered. The viral cytotoxin PB1-F2 contributed to the negative outcomes. These data suggest that additional study of specific bacterial virulence factors involved in the pathogenesis of inflammation and lung damage during coinfections is needed.


Assuntos
Vírus da Influenza A/patogenicidade , Influenza Humana/complicações , Pneumonia Estafilocócica/microbiologia , Staphylococcus aureus/patogenicidade , Superinfecção/microbiologia , Animais , Citotoxinas , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Influenza A/imunologia , Fígado/patologia , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Staphylococcus aureus Resistente à Meticilina , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Estafilocócica/complicações , Reação em Cadeia da Polimerase , Baço/patologia , Baço/virologia , Superinfecção/complicações , Análise de Sobrevida
20.
J Infect Dis ; 202(8): 1287-95, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20822454

RESUMO

The role of respiratory viruses in the transmission of Streptococcus pneumoniae is poorly understood. Key questions, such as which serotypes are most fit for transmission and disease and whether influenza virus alters these parameters in a serotype-specific manner, have not been adequately studied. In a novel model of transmission in ferrets, we demonstrated that pneumococcal transmission and disease were enhanced if donors had previously been infected with influenza virus. Bacterial titers in nasal wash, the incidence of mucosal and invasive disease, and the percentage of contacts that were infected all increased. In contact ferrets, viral infection increased their susceptibility to S. pneumoniae acquisition both in terms of the percentage infected and the distance over which they could acquire infection. These influenza-mediated effects on colonization, transmission, and disease were dependent on the pneumococcal strain. Overall, these data argue that the relationship between respiratory viral infections, acquisition of pneumococci, and development of disease in humans needs further study to be better understood.


Assuntos
Furões , Interações Hospedeiro-Patógeno , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/transmissão , Streptococcus pneumoniae/fisiologia , Animais , Modelos Animais de Doenças , Cães , Furões/microbiologia , Furões/virologia , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/mortalidade , Infecções Pneumocócicas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA