Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Elife ; 112022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36165439

RESUMO

Major genomic deletions in independent eukaryotic lineages have led to repeated ancestral loss of biosynthesis pathways for nine of the twenty canonical amino acids. While the evolutionary forces driving these polyphyletic deletion events are not well understood, the consequence is that extant metazoans are unable to produce nine essential amino acids (EAAs). Previous studies have highlighted that EAA biosynthesis tends to be more energetically costly, raising the possibility that these pathways were lost from organisms with access to abundant EAAs. It is unclear whether present-day metazoans can reaccept these pathways to resurrect biosynthetic capabilities that were lost long ago or whether evolution has rendered EAA pathways incompatible with metazoan metabolism. Here, we report progress on a large-scale synthetic genomics effort to reestablish EAA biosynthetic functionality in mammalian cells. We designed codon-optimized biosynthesis pathways based on genes mined from Escherichia coli. These pathways were de novo synthesized in 3 kilobase chunks, assembled in yeasto and genomically integrated into a Chinese hamster ovary (CHO) cell line. One synthetic pathway produced valine at a sufficient level for cell viability and proliferation. 13C-tracing verified de novo biosynthesis of valine and further revealed build-up of pathway intermediate 2,3-dihydroxy-3-isovalerate. Increasing the dosage of downstream ilvD boosted pathway performance and allowed for long-term propagation of second-generation cells in valine-free medium at 3.2 days per doubling. This work demonstrates that mammalian metabolism is amenable to restoration of ancient core pathways, paving a path for genome-scale efforts to synthetically restore metabolic functions to the metazoan lineage.


Assuntos
Aminoácidos Essenciais , Genoma , Aminoácidos/genética , Animais , Células CHO , Cricetinae , Cricetulus , Escherichia coli/genética , Mamíferos , Valina
2.
Nat Mater ; 21(4): 471-478, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857911

RESUMO

Engineered living materials could have the capacity to self-repair and self-replicate, sense local and distant disturbances in their environment, and respond with functionalities for reporting, actuation or remediation. However, few engineered living materials are capable of both responsivity and use in macroscopic structures. Here we describe the development, characterization and engineering of a fungal-bacterial biocomposite grown on lignocellulosic feedstocks that can form mouldable, foldable and regenerative living structures. We have developed strategies to make human-scale biocomposite structures using mould-based and origami-inspired growth and assembly paradigms. Microbiome profiling of the biocomposite over multiple generations enabled the identification of a dominant bacterial component, Pantoea agglomerans, which was further isolated and developed into a new chassis. We introduced engineered P. agglomerans into native feedstocks to yield living blocks with new biosynthetic and sensing-reporting capabilities. Bioprospecting the native microbiota to develop engineerable chassis constitutes an important strategy to facilitate the development of living biomaterials with new properties and functionalities.


Assuntos
Pantoea , Materiais Biocompatíveis , Humanos , Pantoea/química , Pantoea/genética
3.
Nat Chem Biol ; 17(3): 246-253, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432236

RESUMO

DNA has been the predominant information storage medium for biology and holds great promise as a next-generation high-density data medium in the digital era. Currently, the vast majority of DNA-based data storage approaches rely on in vitro DNA synthesis. As such, there are limited methods to encode digital data into the chromosomes of living cells in a single step. Here, we describe a new electrogenetic framework for direct storage of digital data in living cells. Using an engineered redox-responsive CRISPR adaptation system, we encoded binary data in 3-bit units into CRISPR arrays of bacterial cells by electrical stimulation. We demonstrate multiplex data encoding into barcoded cell populations to yield meaningful information storage and capacity up to 72 bits, which can be maintained over many generations in natural open environments. This work establishes a direct digital-to-biological data storage framework and advances our capacity for information exchange between silicon- and carbon-based entities.


Assuntos
Engenharia Celular/métodos , DNA/genética , Técnicas Eletroquímicas , Elétrons , Escherichia coli/genética , Armazenamento e Recuperação da Informação/métodos , Sequência de Bases , Sistemas CRISPR-Cas , Carbono/química , DNA/classificação , DNA/metabolismo , Eletricidade , Escherichia coli/metabolismo , Ferrocianetos/química , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Análise de Sequência de DNA , Silício/química
4.
Mol Syst Biol ; 15(8): e8875, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31464371

RESUMO

Cell-free expression systems enable rapid prototyping of genetic programs in vitro. However, current throughput of cell-free measurements is limited by the use of channel-limited fluorescent readouts. Here, we describe DNA Regulatory element Analysis by cell-Free Transcription and Sequencing (DRAFTS), a rapid and robust in vitro approach for multiplexed measurement of transcriptional activities from thousands of regulatory sequences in a single reaction. We employ this method in active cell lysates developed from ten diverse bacterial species. Interspecies analysis of transcriptional profiles from > 1,000 diverse regulatory sequences reveals functional differences in promoter activity that can be quantitatively modeled, providing a rich resource for tuning gene expression in diverse bacterial species. Finally, we examine the transcriptional capacities of dual-species hybrid lysates that can simultaneously harness gene expression properties of multiple organisms. We expect that this cell-free multiplex transcriptional measurement approach will improve genetic part prototyping in new bacterial chassis for synthetic biology.


Assuntos
Actinobacteria/genética , Firmicutes/genética , Ensaios de Triagem em Larga Escala , Proteobactérias/genética , Frações Subcelulares/metabolismo , Transcrição Gênica , Actinobacteria/química , Actinobacteria/metabolismo , Firmicutes/química , Firmicutes/metabolismo , Biblioteca Gênica , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteobactérias/química , Proteobactérias/metabolismo , Frações Subcelulares/química , Biologia Sintética/métodos
5.
Mol Biol Evol ; 32(4): 1091-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25556235

RESUMO

Over evolutionary time, both host- and virus-encoded genes have been continually selected to modify their interactions with one another. This has resulted in the rapid evolution of the specific codons that govern the physical interactions between host and virus proteins. Virologists have discovered that these evolutionary signatures, acquired in nature, can provide a shortcut in the functional dissection of host-virus interactions in the laboratory. However, the use of evolution studies in this way is complicated by the fact that many nonhuman primate species are endangered, and biomaterials are often difficult to acquire. Here, we assess how the species representation in primate gene data sets affects the detection of positive natural selection. Our results demonstrate how targeted primate sequencing projects could greatly enhance research in immunology, virology, and beyond.


Assuntos
Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Primatas/genética , Seleção Genética , Vírus/genética , Animais , Genes , Primatas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
BMC Evol Biol ; 14: 155, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25011685

RESUMO

BACKGROUND: The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian cancers. RESULTS: To obtain a deeper understanding of the evolutionary trajectory of BRCA1, we analyzed complete BRCA1 gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated selection for amino acid replacement over primate evolution. This selection has been focused specifically on humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining BRCA1 polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find considerable variation within each of these species and evidence for recent selection in chimpanzee populations. Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved under positive selection. CONCLUSIONS: While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene. A hypothesis where viruses are the drivers of this natural selection is discussed.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Evolução Molecular , Genes BRCA1 , Genes BRCA2 , Primatas/genética , Sequência de Aminoácidos , Animais , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Neoplasias da Mama/genética , Reparo do DNA , Éxons , Feminino , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neoplasias Ovarianas/genética , Polimorfismo Genético , Primatas/virologia , Seleção Genética , Alinhamento de Sequência
7.
Proc Natl Acad Sci U S A ; 110(49): 19872-7, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24243955

RESUMO

A major limitation of high-throughput DNA sequencing is the high rate of erroneous base calls produced. For instance, Illumina sequencing machines produce errors at a rate of ~0.1-1 × 10(-2) per base sequenced. These technologies typically produce billions of base calls per experiment, translating to millions of errors. We have developed a unique library preparation strategy, "circle sequencing," which allows for robust downstream computational correction of these errors. In this strategy, DNA templates are circularized, copied multiple times in tandem with a rolling circle polymerase, and then sequenced on any high-throughput sequencing machine. Each read produced is computationally processed to obtain a consensus sequence of all linked copies of the original molecule. Physically linking the copies ensures that each copy is independently derived from the original molecule and allows for efficient formation of consensus sequences. The circle-sequencing protocol precedes standard library preparations and is therefore suitable for a broad range of sequencing applications. We tested our method using the Illumina MiSeq platform and obtained errors in our processed sequencing reads at a rate as low as 7.6 × 10(-6) per base sequenced, dramatically improving the error rate of Illumina sequencing and putting error on par with low-throughput, but highly accurate, Sanger sequencing. Circle sequencing also had substantially higher efficiency and lower cost than existing barcode-based schemes for correcting sequencing errors.


Assuntos
Biologia Computacional/métodos , DNA Circular/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Projetos de Pesquisa , Biblioteca Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA