Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
bioRxiv ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39131285

RESUMO

Clade 2.3.4.4b highly pathogenic H5N1 avian influenza (HPAI) viruses started circulating widely in lactating dairy cattle in the United States at the end of 2023. Avian influenza viruses enter cells after binding to glycan receptors with terminally linked α2-3 sialic acid, whereas human influenza viruses typically bind to glycan receptors terminally linked α2-6 sialic acid in the upper respiratory tract. Here, we evaluated the receptor binding properties of hemagglutinin (HA) trimers from a clade 2.3.4.4b avian isolate (A/American Wigeon/South Carolina/22-000345-001/2021) and a cattle isolate (A/dairy cattle/Texas/24-008749-002-v/2024). Using two different methods, we found that both of the 2.3.4.4b H5s bound efficiently to glycan receptors with terminally linked α2-3 sialic acid with no detectable binding to glycan receptors with terminally linked α2-6 sialic acid. Our data suggest that clade 2.3.4.4b H5N1 viruses bind poorly to human receptors. It will be important to continue evaluating receptor binding properties of these viruses as they evolve in cattle.

2.
JACS Au ; 4(8): 2966-2978, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39211606

RESUMO

Sulfated N-glycans are present in many glycoproteins, which are implicated in playing important roles in biological recognition processes. Here, we report the systematic chemoenzymatic synthesis of a library of sulfated and sialylated biantennary N-glycans and assess their binding to Siglecs and glycan-specific antibodies that recognize them as glycan ligands. The combined use of three human sulfotransferases, GlcNAc-6-O-sulfotransferase (CHST2), Gal-3-O-sulfotransferase (Gal3ST1), and keratan sulfate Gal-6-O-sulfotransferase (CHST1), resulted in asymmetric and symmetric branch-selective sulfation of the GlcNAc and/or Gal moieties of N-glycans. The extension of the sugar chain using α-2,3- and α-2,6-sialyltransferases afforded the sulfated and sialylated N-glycans. These synthetic glycans with different patterns of sulfation and sialylation were evaluated for binding to selected Siglecs and sulfoglycan-specific antibodies using glycan microarrays. The results confirm previously documented glycan-recognizing properties and further reveal novel specificities for these glycan-binding proteins, demonstrating the utility of the library for assessing the specificity of glycan-binding proteins recognizing sulfated and sialylated glycans.

3.
Nat Commun ; 15(1): 5175, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890325

RESUMO

The receptor-binding site of influenza A virus hemagglutinin partially overlaps with major antigenic sites and constantly evolves. In this study, we observe that mutations G186D and D190N in the hemagglutinin receptor-binding site have coevolved in two recent human H3N2 clades. X-ray crystallography results show that these mutations coordinately drive the evolution of the hemagglutinin receptor binding mode. Epistasis between G186D and D190N is further demonstrated by glycan binding and thermostability analyses. Immunization and neutralization experiments using mouse and human samples indicate that the evolution of receptor binding mode is accompanied by a change in antigenicity. Besides, combinatorial mutagenesis reveals that G186D and D190N, along with other natural mutations in recent H3N2 strains, alter the compatibility with a common egg-adaptive mutation in seasonal influenza vaccines. Overall, our findings elucidate the role of epistasis in shaping the recent evolution of human H3N2 hemagglutinin and substantiate the high evolvability of its receptor-binding mode.


Assuntos
Epistasia Genética , Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Animais , Camundongos , Sítios de Ligação , Influenza Humana/virologia , Mutação , Cristalografia por Raios X , Vacinas contra Influenza , Ligação Proteica , Receptores Virais/metabolismo , Receptores Virais/genética , Receptores Virais/química , Feminino
4.
Nat Commun ; 15(1): 5025, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871701

RESUMO

Influenza A viruses in swine have considerable genetic diversity and continue to pose a pandemic threat to humans due to a potential lack of population level immunity. Here we describe a pipeline to characterize and triage influenza viruses for their pandemic risk and examine the pandemic potential of two widespread swine origin viruses. Our analysis reveals that a panel of human sera collected from healthy adults in 2020 has no cross-reactive neutralizing antibodies against a α-H1 clade strain (α-swH1N2) but do against a γ-H1 clade strain. The α-swH1N2 virus replicates efficiently in human airway cultures and exhibits phenotypic signatures similar to the human H1N1 pandemic strain from 2009 (H1N1pdm09). Furthermore, α-swH1N2 is capable of efficient airborne transmission to both naïve ferrets and ferrets with prior seasonal influenza immunity. Ferrets with H1N1pdm09 pre-existing immunity show reduced α-swH1N2 viral shedding and less severe disease signs. Despite this, H1N1pdm09-immune ferrets that became infected via the air can still onward transmit α-swH1N2 with an efficiency of 50%. These results indicate that this α-swH1N2 strain has a higher pandemic potential, but a moderate level of impact since there is reduced replication fitness and pathology in animals with prior immunity.


Assuntos
Furões , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H1N2 , Influenza Humana , Infecções por Orthomyxoviridae , Pandemias , Animais , Furões/virologia , Humanos , Suínos , Influenza Humana/virologia , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Humana/sangue , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/sangue , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/sangue , Feminino , Eliminação de Partículas Virais , Masculino , Adulto , Replicação Viral
5.
Cell Host Microbe ; 32(2): 261-275.e4, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38307019

RESUMO

Hemagglutinins (HAs) from human influenza viruses descend from avian progenitors that bind α2-3-linked sialosides and must adapt to glycans with α2-6-linked sialic acids on human airway cells to transmit within the human population. Since their introduction during the 1968 pandemic, H3N2 viruses have evolved over the past five decades to preferentially recognize human α2-6-sialoside receptors that are elongated through addition of poly-LacNAc. We show that more recent H3N2 viruses now make increasingly complex interactions with elongated receptors while continuously selecting for strains maintaining this phenotype. This change in receptor engagement is accompanied by an extension of the traditional receptor-binding site to include residues in key antigenic sites on the surface of HA trimers. These results help explain the propensity for selection of antigenic variants, leading to vaccine mismatching, when H3N2 viruses are propagated in chicken eggs or cells that do not contain such receptors.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Animais , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Receptores Virais/química , Ácidos Siálicos/metabolismo , Polissacarídeos/metabolismo , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza
6.
PLoS Pathog ; 19(6): e1011416, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37384622

RESUMO

Vaccination strategies aimed at maturing broadly neutralizing antibodies (bnAbs) from naïve precursors are hindered by unusual features that characterize these Abs, including insertions and deletions (indels). Longitudinal studies of natural HIV infection cases shed light on the complex processes underlying bnAb development and have suggested a role for superinfection as a potential enhancer of neutralization breadth. Here we describe the development of a potent bnAb lineage that was elicited by two founder viruses to inform vaccine design. The V3-glycan targeting bnAb lineage (PC39-1) was isolated from subtype C-infected IAVI Protocol C elite neutralizer, donor PC39, and is defined by the presence of multiple independent insertions in CDRH1 that range from 1-11 amino acids in length. Memory B cell members of this lineage are predominantly atypical in phenotype yet also span the class-switched and antibody-secreting cell compartments. Development of neutralization breadth occurred concomitantly with extensive recombination between founder viruses before each virus separated into two distinct population "arms" that evolved independently to escape the PC39-1 lineage. Ab crystal structures show an extended CDRH1 that can help stabilize the CDRH3. Overall, these findings suggest that early exposure of the humoral system to multiple related Env molecules could promote the induction of bnAbs by focusing Ab responses to conserved epitopes.


Assuntos
Dermatite , Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Epitopos
7.
Methods Mol Biol ; 2578: 63-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152281

RESUMO

Understanding antibody specificity and defining response profiles to antigens continue to be essential to both vaccine research and therapeutic antibody development. Peptide scanning assays enable mapping of continuous epitopes in order to delineate antibody-antigen interactions beyond traditional immunoassay formats. We have developed a relatively low-cost method to generate peptide microarray slides for antibody binding studies that allow for interrogation of up to 1536 overlapping peptides derived from the target antigens on a single microslide. Using an IntavisAG MultiPep RS peptide synthesizer and a Digilab MicroGrid II 600 microarray printer robot, each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface. Interrogation of the surface can then be performed using polyclonal immune sera or monoclonal antibodies, and sensitive detection using an InnoScan 1100 AL scanner with fluorescent-conjugated secondary reagents maximizes conservation of reagents.


Assuntos
Análise Serial de Proteínas , Vacinas , Anticorpos Monoclonais , Mapeamento de Epitopos/métodos , Epitopos , Soros Imunes , Peptídeos , Polietilenoglicóis , Análise Serial de Proteínas/métodos
8.
Cell Rep ; 39(9): 110897, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649381

RESUMO

Influenza viruses circulated at very low levels during the beginning of the COVID-19 pandemic, and population immunity against these viruses is low. An H3N2 strain (3C.2a1b.2a2) with a hemagglutinin (HA) that has several substitutions relative to the 2021-22 H3N2 vaccine strain is dominating the 2021-22 Northern Hemisphere influenza season. Here, we show that one of these substitutions eliminates a key glycosylation site on HA and alters sialic acid binding. Using glycan array profiling, we show that the 3C.2a1b.2a2 H3 maintains binding to an extended biantennary sialoside and replicates to high titers in human airway cells. We find that antibodies elicited by the 2021-22 Northern Hemisphere influenza vaccine poorly neutralize the 3C.2a1b.2a2 H3N2 strain. Together, these data indicate that 3C.2a1b.2a2 H3N2 viruses efficiently replicate in human cells and escape vaccine-elicited antibodies.


Assuntos
COVID-19 , Influenza Humana , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Pandemias , Estações do Ano
9.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33893239

RESUMO

Siglecs are a family of sialic acid-binding receptors expressed by cells of the immune system and a few other cell types capable of modulating immune cell functions upon recognition of sialoglycan ligands. While human Siglecs primarily bind to sialic acid residues on diverse types of glycoproteins and glycolipids that constitute the sialome, their fine binding specificities for elaborated complex glycan structures and the contribution of the glycoconjugate and protein context for recognition of sialoglycans at the cell surface are not fully elucidated. Here, we generated a library of isogenic human HEK293 cells with combinatorial loss/gain of individual sialyltransferase genes and the introduction of sulfotransferases for display of the human sialome and to dissect Siglec interactions in the natural context of glycoconjugates at the cell surface. We found that Siglec-4/7/15 all have distinct binding preferences for sialylated GalNAc-type O-glycans but exhibit selectivity for patterns of O-glycans as presented on distinct protein sequences. We discovered that the sulfotransferase CHST1 drives sialoglycan binding of Siglec-3/8/7/15 and that sulfation can impact the preferences for binding to O-glycan patterns. In particular, the branched Neu5Acα2-3(6-O-sulfo)Galß1-4GlcNAc (6'-Su-SLacNAc) epitope was discovered as the binding epitope for Siglec-3 (CD33) implicated in late-onset Alzheimer's disease. The cell-based display of the human sialome provides a versatile discovery platform that enables dissection of the genetic and biosynthetic basis for the Siglec glycan interactome and other sialic acid-binding proteins.


Assuntos
Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Análise Serial de Tecidos/métodos , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Mucina-1 , Polissacarídeos/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo
10.
Cell Host Microbe ; 28(4): 602-613.e7, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33031770

RESUMO

In 2014, an outbreak of avian A/H10N7 influenza virus occurred among seals along North-European coastal waters, significantly impacting seal populations. Here, we examine the cross-species transmission and mammalian adaptation of this influenza A virus, revealing changes in the hemagglutinin surface protein that increase stability and receptor binding. The seal A/H10N7 virus was aerosol or respiratory droplet transmissible between ferrets. Compared with avian H10 hemagglutinin, seal H10 hemagglutinin showed stronger binding to the human-type sialic acid receptor, with preferential binding to α2,6-linked sialic acids on long extended branches. In X-ray structures, changes in the 220-loop of the receptor-binding pocket caused similar interactions with human receptor as seen for pandemic strains. Two substitutions made seal H10 hemagglutinin more stable than avian H10 hemagglutinin and similar to human hemagglutinin. Consequently, identification of avian-origin influenza viruses across mammals appears critical to detect influenza A viruses posing a major threat to humans and other mammals.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/transmissão , Aerossóis , Animais , Sítios de Ligação , Aves/virologia , Furões/virologia , Humanos , Vírus da Influenza A Subtipo H10N7 , Vírus da Influenza A/metabolismo , Influenza Aviária/virologia , Mamíferos , Fusão de Membrana , Modelos Moleculares , Infecções por Orthomyxoviridae/virologia , Polissacarídeos , Ácidos Siálicos/metabolismo
11.
Cell Host Microbe ; 27(5): 725-735.e5, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32298658

RESUMO

Hemagglutinins (HAs) from human influenza viruses adapt to bind α2-6-linked sialosides, overcoming a receptor-defined species barrier distinct from the α2-3 specificity of avian virus progenitors. Additionally, human-adapted HAs gain glycosylation sites over time, although their biological function is poorly defined. Using quantitative glycomic analysis, we show that HAs from human pandemic viruses exhibit significant proportions of high-mannose type N-linked glycans throughout the head domain. By contrast, poorly adapted avian-origin HAs contain predominately complex-type glycans, which have greater structural diversity. Although oligomannose levels vary, they are present in all tested recombinant HAs and whole viruses and can be specifically targeted for universal detection. The positions of high-mannose glycosites on the HA of human H1N1 and H3N2 strains are conserved. Additionally, high-mannose-binding lectins possess a broad capacity to neutralize and prevent infection with contemporary H3N2 strains. These findings reveal the biological significance of HA glycosylation and therapeutic potential of targeting these structures.


Assuntos
Anticorpos Neutralizantes , Hemaglutininas/metabolismo , Vírus da Influenza A/imunologia , Lectinas/metabolismo , Polissacarídeos/metabolismo , Animais , Cães , Glicosilação , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas/química , Hemaglutininas/genética , Hemaglutininas/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Lectinas/imunologia , Células Madin Darby de Rim Canino , Modelos Moleculares , Polissacarídeos/imunologia , Conformação Proteica
12.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321815

RESUMO

Highly pathogenic avian influenza (HPAI) viruses are enzootic in wild birds and poultry and continue to cause human infections with high mortality. To date, more than 850 confirmed human cases of H5N1 virus infection have been reported, of which ∼60% were fatal. Global concern persists that these or similar avian influenza viruses will evolve into viruses that can transmit efficiently between humans, causing a severe influenza pandemic. It was shown previously that a change in receptor specificity is a hallmark for adaptation to humans and evolution toward a transmittable virus. Substantial genetic diversity was detected within the receptor binding site of hemagglutinin of HPAI A/H5N1 viruses, evolved during human infection, as detected by next-generation sequencing. Here, we investigated the functional impact of substitutions that were detected during these human infections. Upon rescue of 21 mutant viruses, most substitutions in the receptor binding site (RBS) resulted in viable virus, but virus replication, entry, and stability were often impeded. None of the tested substitutions individually resulted in a clear switch in receptor preference as measured with modified red blood cells and glycan arrays. Although several combinations of the substitutions can lead to human-type receptor specificity, accumulation of multiple amino acid substitutions within a single hemagglutinin during human infection is rare, thus reducing the risk of virus adaptation to humans.IMPORTANCE H5 viruses continue to be a threat for public health. Because these viruses are immunologically novel to humans, they could spark a pandemic when adapted to transmit between humans. Avian influenza viruses need several adaptive mutations to bind to human-type receptors, increase hemagglutinin (HA) stability, and replicate in human cells. However, knowledge on adaptive mutations during human infections is limited. A previous study showed substantial diversity within the receptor binding site of H5N1 during human infection. We therefore analyzed the observed amino acid changes phenotypically in a diverse set of assays, including virus replication, stability, and receptor specificity. None of the tested substitutions resulted in a clear step toward a human-adapted virus capable of aerosol transmission. It is notable that acquiring human-type receptor specificity needs multiple amino acid mutations, and that variability at key position 226 is not tolerated, reducing the risk of them being acquired naturally.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Receptores Virais/genética , Adaptação Fisiológica/genética , Substituição de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Variação Biológica da População/genética , Aves , Cães , Hemaglutininas Virais/genética , Humanos , Vírus da Influenza A/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Aves Domésticas , Ligação Proteica/genética , Receptores Virais/metabolismo
13.
Microbiol Immunol ; 64(4): 304-312, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943329

RESUMO

Avian influenza viruses (AIVs) recognize sialic acid linked α2,3 to galactose (SAα2,3Gal) glycans as receptors. In this study, the interactions between hemagglutinins (HAs) of AIVs and sulfated SAα2,3Gal glycans were analyzed to clarify the molecular basis of interspecies transmission of AIVs from ducks to chickens. It was revealed that E190V and N192D substitutions of the HA increased the recovery of viruses derived from an H6 duck virus isolate, A/duck/Hong Kong/960/1980 (H6N2), in chickens. Recombinant HAs from an H6 chicken virus, A/chicken/Tainan/V156/1999 (H6N1), bound to sulfated SAα2,3Gal glycans, whereas the HAs from an H6 duck virus did not. Binding preference of mutant HAs revealed that an E190V substitution is critical for the recognition of sulfated SAα2,3Gal glycans. These results suggest that the binding of the HA from H6 AIVs to sulfated SAα2,3Gal glycans explains a part of mechanisms of interspecies transmission of AIVs from ducks to chickens.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/patogenicidade , Influenza Aviária/transmissão , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Receptores Virais/metabolismo , Animais , Galinhas , Cães , Patos , Células HEK293 , Humanos , Influenza Aviária/virologia , Células Madin Darby de Rim Canino , Óvulo , Ligação Proteica
14.
Gastroenterology ; 158(4): 1058-1071.e6, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31809725

RESUMO

BACKGROUND & AIMS: We investigated antibody responses to hepatitis C virus (HCV) antigens E1 and E2 and the relevance of animal models for vaccine development. We compared antibody responses to vaccination with recombinant E1E2 complex in healthy volunteers, non-human primates (NHPs), and mice. METHODS: We analyzed 519 serum samples from participants in a phase 1 vaccine trial (ClinicalTrials.gov identifier NCT00500747) and compared them with serum or plasma samples from C57BL/6J mice (n = 28) and rhesus macaques (n = 4) immunized with the same HCV E1E2 antigen. Blood samples were collected at different time points and analyzed for antibody binding, neutralizing activity, and epitope specificity. Monoclonal antibodies from the immunized NHPs were isolated from single plasmablasts and memory B cells, and their immunogenetic properties were characterized. RESULTS: Antibody responses of the volunteers, NHPs, and mice to the non-neutralizing epitopes on the E1 N-terminus and E2 hypervariable region 1 did not differ significantly. Antibodies from volunteers and NHPs that neutralized heterologous strains of HCV primarily interacted with epitopes in the antigen region 3. However, the neutralizing antibodies were not produced in sufficient levels for broad neutralization of diverse HCV isolates. Broadly neutralizing antibodies similar to the human VH1-69 class antibody specific for antigen region 3 were produced in the immunized NHPs. CONCLUSIONS: In an analysis of vaccinated volunteers, NHPs, and mice, we found that recombinant E1E2 vaccine antigen induces high-antibody titers that are insufficient to neutralize diverse HCV isolates. Antibodies from volunteers and NHPs bind to the same neutralizing epitopes for virus neutralization. NHPs can therefore be used as a preclinical model to develop HCV vaccines. These findings also provide useful baseline values for development of vaccines designed to induce production of neutralizing antibodies.


Assuntos
Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , Ensaios Clínicos Fase I como Assunto , Modelos Animais de Doenças , Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Humanos , Imunização , Imunogenicidade da Vacina , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Sintéticas/imunologia
15.
iScience ; 22: 557-570, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863782

RESUMO

The endogenous melanocortin peptide agouti-related protein (AgRP) plays a well-known role in foraging, but its contribution to metabolic regulation is less understood. Mature AgRP(83-132) has distinct residues for melanocortin receptor binding and heparan sulfate interactions. Here, we show that AgRP increases ad libitum feeding and operant responding for food in mice, decreases oxygen consumption, and lowers body temperature and activity, indicating lower energy expenditure. AgRP increased the respiratory exchange ratio, indicating a reduction of fat oxidation and a shift toward carbohydrates as the primary fuel source. The duration and intensity of AgRP's effects depended on the density of its positively charged amino acids, suggesting that its orexigenic and metabolic effects depend on its affinity for heparan sulfate. These findings may have major clinical implications by unveiling the critical involvement of interactions between AgRP and heparan sulfate to the central regulation of energy expenditure, fat utilization, and possibly their contribution to metabolic disease.

16.
Cell Host Microbe ; 26(6): 729-738.e4, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31757767

RESUMO

Influenza virus neuraminidase (NA) is a major target for small-molecule antiviral drugs. Antibodies targeting the NA surface antigen could also inhibit virus entry and egress to provide host protection. However, our understanding of the nature and range of target epitopes is limited because of a lack of human antibody structures with influenza neuraminidase. Here, we describe crystal and cryogenic electron microscopy (cryo-EM) structures of NAs from human-infecting avian H7N9 viruses in complex with five human anti-N9 antibodies, systematically defining several antigenic sites and antibody epitope footprints. These antibodies either fully or partially block the NA active site or bind to epitopes distant from the active site while still showing neuraminidase inhibition. The inhibition of antibodies to NAs was further analyzed by glycan array and solution-based NA activity assays. Together, these structural studies provide insights into protection by anti-NA antibodies and templates for the development of NA-based influenza virus vaccines and therapeutics.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos/ultraestrutura , Neuraminidase , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/ultraestrutura , Antivirais/imunologia , Microscopia Crioeletrônica , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza , Neuraminidase/química , Neuraminidase/ultraestrutura , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/química , Proteínas Virais/ultraestrutura
17.
J Am Chem Soc ; 141(36): 14032-14037, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31460762

RESUMO

The Siglec family of cell surface receptors have emerged as attractive targets for cell-directed therapies due to their restricted expression on immune cells, endocytic properties, and ability to modulate receptor signaling. Human Siglec-8, for instance, has been identified as a therapeutic target for the treatment of eosinophil and mast cell disorders. A promising strategy to target Siglecs involves the use of liposomal nanoparticles with a multivalent display of Siglec ligands. A key challenge for this approach is the identification of a high affinity ligand for the target Siglec. Here, we report the development of a ligand of Siglec-8 and its closest murine functional orthologue Siglec-F that is capable of targeting liposomes to cells expressing Siglec-8 or -F. A glycan microarray library of synthetic 9-N-sulfonyl sialoside analogues was screened to identify potential lead compounds. The best ligand, 9-N-(2-naphthyl-sulfonyl)-Neu5Acα2-3-[6-O-sulfo]-Galß1-4GlcNAc (6'-O-sulfo NSANeu5Ac) combined the lead 2-naphthyl sulfonyl C-9 substituent with the preferred sulfated scaffold. The ligand 6'-O-sulfo NSANeu5Ac was conjugated to lipids for display on liposomes to evaluate targeted delivery to cells. Targeted liposomes showed strong in vitro binding/uptake and selectivity to cells expressing Siglec-8 or -F and, when administered to mice, exhibit in vivo targeting to Siglec-F+ eosinophils.


Assuntos
Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfócitos B/efeitos dos fármacos , Lectinas/antagonistas & inibidores , Ácidos Siálicos/farmacologia , Sulfonamidas/farmacologia , Linfócitos T/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Células CHO , Cricetulus , Humanos , Lectinas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Conformação Molecular , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Ácidos Siálicos/química , Sulfonamidas/química , Linfócitos T/metabolismo
18.
Cell Host Microbe ; 25(6): 836-844.e5, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31151913

RESUMO

Egg-based seasonal influenza vaccines are the major preventive countermeasure against influenza virus. However, their effectiveness can be compromised when antigenic changes arise from egg-adaptive mutations on influenza hemagglutinin (HA). The L194P mutation is commonly observed in egg-based H3N2 vaccine seed strains and significantly alters HA antigenicity. An approach to prevent L194P would therefore be beneficial. We show that emergence of L194P during egg passaging can be impeded by preexistence of a G186V mutation, revealing strong incompatibility between these mutations. X-ray structures illustrate that individual G186V and L194P mutations have opposing effects on the HA receptor-binding site (RBS), and when both G186V and L194P are present, the RBS is severely disrupted. Importantly, wild-type HA antigenicity is maintained with G186V, but not L194P. Our results demonstrate that these epistatic interactions can be used to prevent the emergence of mutations that adversely alter antigenicity during egg adaptation.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Mutação de Sentido Incorreto , Adaptação Biológica , Animais , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Sítios de Ligação , Embrião de Galinha , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H3N2/genética , Conformação Proteica , Tecnologia Farmacêutica/métodos , Cultura de Vírus/métodos
19.
Nat Microbiol ; 4(7): 1242, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31197252

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
J Mol Biol ; 431(4): 842-856, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30597163

RESUMO

Influenza A virus carries hundreds of trimeric hemagglutinin (HA) proteins on its viral envelope that interact with various sialylated glycans on a host cell. This interaction represents a multivalent binding event that is present in all the current receptor binding assays, including those employing viruses or precomplexed HA trimers. To study the nature of such multivalent binding events, we fused a superfolder green fluorescent protein (sfGFP) to the C-terminus of trimeric HA to allow for direct visualization of HA-receptor interactions without the need for additional fluorescent antibodies. The multivalent binding of the HA-sfGFP proteins was studied using glycan arrays and tissue staining. The HA-sfGFP with human-type receptor specificity was able to bind to a glycan array as the free trimer. In contrast, the HA-sfGFP with avian-type receptor specificity required multimerization by antibodies before binding to glycans on the glycan array could be observed. Interestingly, multimerization was not required for binding to tissues. The array data may be explained by the possible bivalent binding mode of a single human-specific HA trimer to complex branched N-glycans, which is not possible for the avian-specific HA due to geometrical constrains of the binding sites. The fact that this specificity pattern changes upon interaction with a cell surface probably represents the enhanced amount of glycan orientations and variable densities versus those on the glycan array.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/metabolismo , Influenza Aviária/metabolismo , Influenza Humana/metabolismo , Ligação Proteica/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Sítios de Ligação/fisiologia , Aves , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA