RESUMO
This article presents the current state-of-practice with respect to quantifying the total cost to retrofit an existing building. In particular, we combine quantitative, qualitative, and heuristic data to provide a taxonomy for understanding the direct and indirect costs associated with seismic risk mitigation. Much of the literature to date has focused on estimating structural retrofit costs, the costs of retrofitting the structural elements of a building. In contrast, there is very little research or data on the remaining cost components of the total cost. We propose using structural cost as the foundation for approximating the remaining cost components and the total cost itself. To validate our findings, we compare the proposed approximations with actual cost estimates developed by engineering professionals.
RESUMO
This paper presents a methodology for estimating seismic retrofit costs from historical data. In particular, historical retrofit cost data from FEMA 156 is used to build a generalized linear model (GLM) to predict retrofit costs as a function of building characteristics. While not as accurate as an engineering professional's estimate, this methodology is easy to apply to generate quick estimates and is especially useful for decision makers with large building portfolios. Moreover, the predictive modeling approach provides a measure of uncertainty in terms of prediction error. The paper uses prediction error to compare different modeling choices, including the choice of distribution for costs. Finally, the proposed retrofit cost model is implemented to estimate the cost to retrofit a portfolio of federal buildings. The application illustrates how the choice of distribution affects cost estimates.
RESUMO
In 2017, U.S. damages from natural hazard events exceeded $300B, suggesting that current targets for building performance do not sufficiently mitigate loss. The significant costs borne by individuals, insurers, and government do not include impacts from social disruption, displacement, and subsequent economic and livelihood effects. In 2016, Congress mandated the National Institute of Standards and Technology (NIST) develop a report (NIST SP 1224) describing the research needs, implementation activities, and engineering principles necessary to improve the performance of residential and commercial buildings subjected to natural hazards. An Immediate Occupancy Performance Objective (IOPO) could help preserve building and social functions post event, minimizing physical, social, and economic disaster. The stakeholder-informed NIST report sets forth items needed for multi-hazard building design that can support enhanced resilience decision-making. This paper highlights the social and economic considerations that require additional research, particularly with regard to feasibility and potential impacts from an IOPO. These topics must be considered prior to and throughout the IOPO technical development and community implementation processes to ensure better outcomes after natural hazard events.
RESUMO
The concept of community resilience is complex and multidimensional, relying on engineering and other disciplines to help communities break the cycle of destruction and recovery and reduce the impacts of earthquakes and other hazards. This article presents proposed prioritized actions to improve lifeline infrastructure resilience based on an assessment of lifeline infrastructure performance commissioned and funded by the National Institute of Standards and Technology (NIST).