Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Eur J Cell Biol ; 102(4): 151367, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890285

RESUMO

How cells utilize complex mixtures of actin binding proteins to assemble and maintain functionally diverse actin filament networks with distinct architectures and dynamics within a common cytoplasm is a longstanding question in cell biology. A compelling example of complex and specialized actin structures in cells are filopodia which sense extracellular chemical and mechanical signals to help steer motile cells. Filopodia have distinct actin architecture, composed of long, parallel actin filaments bundled by fascin, which form finger-like membrane protrusions. Elongation of the parallel actin filaments in filopodia can be mediated by two processive actin filament elongation factors, formin and Ena/VASP, which localize to the tips of filopodia. There remains debate as to how the architecture of filopodia are generated, with one hypothesis proposing that filopodia are generated from the lamellipodia, which consists of densely packed, branched actin filaments nucleated by Arp2/3 complex and kept short by capping protein. It remains unclear if different actin filament elongation factors are necessary and sufficient to facilitate the emergence of filopodia with diverse characteristics from a highly dense network of short-branched capped filaments. To address this question, we combined bead motility and micropatterning biomimetic assays with multi-color Total Internal Reflection Fluorescence microscopy imaging, to successfully reconstitute the formation of filopodia-like networks (FLN) from densely-branched lamellipodia-like networks (LLN) with eight purified proteins (actin, profilin, Arp2/3 complex, Wasp pWA, fascin, capping protein, VASP and formin mDia2). Saturating capping protein concentrations inhibit FLN assembly, but the addition of either formin or Ena/VASP differentially rescues the formation of FLN from LLN. Specifically, we found that formin/mDia2-generated FLNs are relatively long and lack capping protein, whereas VASP-generated FLNs are comparatively short and contain capping protein, indicating that the actin elongation factor can affect the architecture and composition of FLN emerging from LLN. Our biomimetic reconstitution systems reveal that formin or VASP are necessary and sufficient to induce the transition from a LLN to a FLN, and establish robust in vitro platforms to investigate FLN assembly mechanisms.


Assuntos
Actinas , Pseudópodes , Actinas/metabolismo , Forminas/metabolismo , Pseudópodes/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
3.
Nature ; 623(7988): 842-852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853127

RESUMO

Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions1. Reciprocally, macromolecules restrict the movement of 'structured' water molecules within their hydration layers, reducing the available 'free' bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales2,3; we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.


Assuntos
Substâncias Macromoleculares , Proteínas , Solventes , Termodinâmica , Água , Morte Celular , Citosol/química , Citosol/metabolismo , Homeostase , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Concentração Osmolar , Pressão , Proteínas/química , Proteínas/metabolismo , Solventes/química , Solventes/metabolismo , Temperatura , Fatores de Tempo , Água/química , Água/metabolismo
4.
J Am Chem Soc ; 144(42): 19294-19304, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36241174

RESUMO

The kinetics of chemical reactions are determined by the law of mass action, which has been successfully applied to homogeneous, dilute mixtures. At nondilute conditions, interactions among the components can give rise to coexisting phases, which can significantly alter the kinetics of chemical reactions. Here, we derive a theory for chemical reactions in coexisting phases at phase equilibrium. We show that phase equilibrium couples the rates of chemical reactions of components with their diffusive exchanges between the phases. Strikingly, the chemical relaxation kinetics can be represented as a flow along the phase equilibrium line in the phase diagram. A key finding of our theory is that differences in reaction rates between coexisting phases stem solely from phase-dependent reaction rate coefficients. Our theory is key to interpreting how concentration levels of reactive components in condensed phases control chemical reaction rates in synthetic and biological systems.


Assuntos
Cinética , Difusão
5.
Science ; 368(6497): 1386-1392, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32554597

RESUMO

The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target. This behavior was also observed in tumor cells, where drug partitioning influenced drug activity. Altering the properties of the condensate was found to affect the concentration and activity of drugs. These results suggest that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics and that further understanding of this phenomenon may facilitate advances in disease therapy.


Assuntos
Antineoplásicos/farmacologia , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Soft Matter ; 15(31): 6300-6307, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31342050

RESUMO

Networks of filamentous actin (F-actin) are important for the mechanics of most animal cells. These cytoskeletal networks are highly dynamic, with a variety of actin-associated proteins that control cross-linking, polymerization and force generation in the cytoskeleton. Inspired by recent rheological experiments on reconstituted solutions of dynamic actin filaments, we report a theoretical model that describes stress relaxation behavior of these solutions in the presence of severing proteins. We show that depending on the kinetic rates of assembly, disassembly, and severing, one can observe both length-dependent and length-independent relaxation behavior.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Modelos Biológicos
7.
Proc Natl Acad Sci U S A ; 116(26): 12629-12637, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189606

RESUMO

The shape of most animal cells is controlled by the actin cortex, a thin network of dynamic actin filaments (F-actin) situated just beneath the plasma membrane. The cortex is held far from equilibrium by both active stresses and polymer turnover: Molecular motors drive deformations required for cell morphogenesis, while actin-filament disassembly dynamics relax stress and facilitate cortical remodeling. While many aspects of actin-cortex mechanics are well characterized, a mechanistic understanding of how nonequilibrium actin turnover contributes to stress relaxation is still lacking. To address this, we developed a reconstituted in vitro system of entangled F-actin, wherein the steady-state length and turnover rate of F-actin are controlled by the actin regulatory proteins cofilin, profilin, and formin, which sever, recycle, and assemble filaments, respectively. Cofilin-mediated severing accelerates the turnover and spatial reorganization of F-actin, without significant changes to filament length. We demonstrate that cofilin-mediated severing is a single-timescale mode of stress relaxation that tunes the low-frequency viscosity over two orders of magnitude. These findings serve as the foundation for understanding the mechanics of more physiological F-actin networks with turnover and inform an updated microscopic model of single-filament turnover. They also demonstrate that polymer activity, in the form of ATP hydrolysis on F-actin coupled to nucleotide-dependent cofilin binding, is sufficient to generate a form of active matter wherein asymmetric filament disassembly preserves filament number despite sustained severing.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Fatores de Despolimerização de Actina/farmacologia , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Forminas/metabolismo , Forminas/farmacologia , Profilinas/metabolismo , Profilinas/farmacologia
8.
Biophys J ; 114(7): 1636-1645, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642033

RESUMO

Biomolecules exist and function in cellular microenvironments that control their spatial organization, local concentration, and biochemical reactivity. Due to the complexity of native cytoplasm, the development of artificial bioreactors and cellular mimics to compartmentalize, concentrate, and control the local physico-chemical properties is of great interest. Here, we employ self-assembling polypeptide coacervates to explore the partitioning of the ubiquitous cytoskeletal protein actin into liquid polymer-rich droplets. We find that actin spontaneously partitions into coacervate droplets and is enriched by up to ∼30-fold. Actin polymerizes into micrometer-long filaments and, in contrast to the globular protein BSA, these filaments localize predominately to the droplet periphery. We observe up to a 50-fold enhancement in the actin filament assembly rate inside coacervate droplets, consistent with the enrichment of actin within the coacervate phase. Together these results suggest that coacervates can serve as a versatile platform in which to localize and enrich biomolecules to study their reactivity in physiological environments.


Assuntos
Actinas/química , Actinas/metabolismo , Peptídeos/química , Citoesqueleto/metabolismo , Polilisina/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína
9.
PLoS Comput Biol ; 13(12): e1005811, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253848

RESUMO

Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how local remodeling tunes stress production and dissipation, and how this in turn shapes long range flow, remains poorly understood. Here, we study a computational model for a cross-linked network with active motors based on minimal requirements for production and dissipation of contractile stress: Asymmetric filament compliance, spatial heterogeneity of motor activity, reversible cross-links and filament turnover. We characterize how the production and dissipation of network stress depend, individually, on cross-link dynamics and filament turnover, and how these dependencies combine to determine overall rates of cortical flow. Our analysis predicts that filament turnover is required to maintain active stress against external resistance and steady state flow in response to external stress. Steady state stress increases with filament lifetime up to a characteristic time τm, then decreases with lifetime above τm. Effective viscosity increases with filament lifetime up to a characteristic time τc, and then becomes independent of filament lifetime and sharply dependent on crosslink dynamics. These individual dependencies of active stress and effective viscosity define multiple regimes of steady state flow. In particular our model predicts that when filament lifetimes are shorter than both τc and τm, the dependencies of effective viscosity and steady state stress on filament turnover cancel one another, such that flow speed is insensitive to filament turnover, and shows a simple dependence on motor activity and crosslink dynamics. These results provide a framework for understanding how animal cells tune cortical flow through local control of network remodeling.


Assuntos
Actomiosina/fisiologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Actomiosina/química , Animais , Fenômenos Biomecânicos , Biologia Computacional , Simulação por Computador , Citoesqueleto/fisiologia , Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Morfogênese , Reologia , Estresse Fisiológico , Viscosidade
10.
Cell Syst ; 4(5): 480-482, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28544879

RESUMO

Computational simulations of polymerizing actin filaments indicate that competition for a limiting pool of building blocks is not sufficient to control their length.


Assuntos
Citoesqueleto de Actina , Actinas , Organelas
11.
Biophys J ; 103(6): 1265-74, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995499

RESUMO

Cells assemble a variety of bundled actomyosin structures in the cytoskeleton for activities such as cell-shape regulation, force production, and cytokinesis. Although these linear structures exhibit varied architecture, two common organizational themes are a punctate distribution of myosin II and distinct patterns of actin polarity. The mechanisms that cells use to assemble and maintain these organizational features are poorly understood. To study these, we reconstituted actomyosin bundles in vitro that contained only actin filaments and myosin II. Upon addition of ATP, the bundles contracted and the uniformly distributed myosin spontaneously reorganized into discrete clusters. We developed a mathematical model in which the motion of myosin II filaments is governed by the polarities of the actin filaments with which they interact. The model showed that the assembly of myosins into clusters is driven by their tendency to migrate to locations with zero net actin filament polarity. With no fitting parameters, the predicted distribution of myosin cluster separations was in close agreement with our experiments, including a -3/2 power law decay for intermediate length scales. Thus, without an organizing template or accessory proteins, a minimal bundle of actin and myosin has the inherent capacity to self-organize into a heterogeneous banded structure.


Assuntos
Actomiosina/metabolismo , Modelos Biológicos , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Trifosfato de Adenosina/farmacologia , Animais , Cinética , Músculo Esquelético/citologia , Miosina Tipo II/química , Coelhos
12.
Biophys J ; 97(8): 2128-36, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19843445

RESUMO

Optical traps or "tweezers" use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments-the most common biological application of optical tweezers-and may guide the development of more robust experimental protocols.


Assuntos
DNA/química , Luz/efeitos adversos , Pinças Ópticas , Oxigênio Singlete/química , Digoxigenina/química , Elasticidade , Fluorescência , Sequências Repetidas Invertidas , Microesferas , Oxirredução , Poliestirenos/química , Dióxido de Silício/química , Estreptavidina/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA