Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Enzymol ; 700: 49-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971612

RESUMO

High pressure is both an environmental challenge to which deep sea biology has to adapt, and a highly sensitive thermodynamic tool that can be used to trigger structural changes in biological molecules and assemblies. Lipid membranes are amongst the most pressure sensitive biological assemblies and pressure can have a large influence on their structure and properties. In this chapter, we will explore the use of high pressure small angle X-ray diffraction and high pressure microscopy to measure and quantify changes in the lateral structure of lipid membranes under both equilibrium high pressure conditions and in response to pressure jumps.


Assuntos
Pressão Hidrostática , Bicamadas Lipídicas , Difração de Raios X , Difração de Raios X/métodos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Espalhamento a Baixo Ângulo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Termodinâmica
2.
Biophys J ; 113(6): 1200-1211, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28801104

RESUMO

A persistent challenge in membrane biophysics has been to quantitatively predict how membrane physical properties change upon addition of new amphiphiles (e.g., lipids, alcohols, peptides, or proteins) in order to assess whether the changes are large enough to plausibly result in biological ramifications. Because of their roles as general anesthetics, n-alcohols are perhaps the best-studied amphiphiles of this class. When n-alcohols are added to model and cell membranes, changes in membrane parameters tend to be modest. One striking exception is found in the large decrease in liquid-liquid miscibility transition temperatures (Tmix) observed when short-chain n-alcohols are incorporated into giant plasma membrane vesicles (GPMVs). Coexisting liquid-ordered and liquid-disordered phases are observed at temperatures below Tmix in GPMVs as well as in giant unilamellar vesicles (GUVs) composed of ternary mixtures of a lipid with a low melting temperature, a lipid with a high melting temperature, and cholesterol. Here, we find that when GUVs of canonical ternary mixtures are formed in aqueous solutions of short-chain n-alcohols (n ≤ 10), Tmix increases relative to GUVs in water. This shift is in the opposite direction from that reported for cell-derived GPMVs. The increase in Tmix is robust across GUVs of several types of lipids, ratios of lipids, types of short-chain n-alcohols, and concentrations of n-alcohols. However, as chain lengths of n-alcohols increase, nonmonotonic shifts in Tmix are observed. Alcohols with chain lengths of 10-14 carbons decrease Tmix in ternary GUVs of dioleoyl-PC/dipalmitoyl-PC/cholesterol, whereas 16 carbons increase Tmix again. Gray et al. observed a similar influence of the length of n-alcohols on the direction of the shift in Tmix. These results are consistent with a scenario in which the relative partitioning of n-alcohols between liquid-ordered and liquid-disordered phases evolves as the chain length of the n-alcohol increases.


Assuntos
Álcoois/química , Membrana Celular/química , Temperatura de Transição , Lipossomas Unilamelares/química , Álcoois/farmacologia , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Microscopia , Fosfatidilcolinas/química , Ratos , Soluções , Água/química
3.
Biophys J ; 111(3): 537-545, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27508437

RESUMO

Diverse molecules induce general anesthesia with potency strongly correlated with both their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma-membrane-derived vesicles by lowering the critical temperature (Tc) for phase separation. Here, we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on Tc. First, we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol-induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described "intoxication reversers" raise Tc and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that elevated hydrostatic pressure, long known to reverse anesthesia, also raises Tc in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that ΔTc predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.


Assuntos
Álcoois/farmacologia , Anestesia , Microdomínios da Membrana/efeitos dos fármacos , Álcoois/química , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Tumoral , Interações Hidrofóbicas e Hidrofílicas , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Ratos , Temperatura , Xenopus laevis
4.
Chem Commun (Camb) ; 51(41): 8675-8, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25907808

RESUMO

We have imaged the formation of membrane microdomains immediately after their induction using a novel technology platform coupling high hydrostatic pressure to fluorescence microscopy. After formation, the ordered domains are small and highly dynamic. This will enhance links between model lipid assemblies and dynamic processes in cellular membranes.


Assuntos
Membrana Celular/química , Lipídeos/isolamento & purificação , Modelos Biológicos , Pressão Hidrostática , Lipídeos/química , Microscopia de Fluorescência , Lipossomas Unilamelares/química
5.
Soft Matter ; 11(16): 3279-86, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25790335

RESUMO

Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.


Assuntos
Lipídeos/química , Colesterol/química , Glicerídeos/química , Fosfatidilgliceróis/química , Eletricidade Estática , Água/química
6.
Langmuir ; 31(12): 3678-86, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25742392

RESUMO

Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(ß)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.


Assuntos
Ceramidas/química , Transição de Fase , Pressão , Esfingomielinas/química , Temperatura , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA