Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Assoc Res Otolaryngol ; 23(2): 213-223, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35118601

RESUMO

Otitis media (OM) disease is a common cause of hearing loss that is primarily the result of middle ear infection. At present, our understanding of the mechanisms leading to OM is limited due to the lack of animal models of OM with effusion (OME). Here, we report that the mice with genetic otitis media one (gom1) mutants are prone to OM. gom1 Mice were produced by the N-ethyl-N-nitrosourea (ENU) mutagenesis program as an animal model to study OM. These mice demonstrate many common features of OM, such as middle ear effusion and hearing impairment. We revealed that gom1 mice display various signs of middle ear and inner ear dysfunctions, including elevated thresholds of auditory-evoked brainstem response (ABR) and lack of cochlear microphonic responses. Decreased compliance in tympanometry measurements indicates tympanic membrane and ossicular chain malfunction. We confirmed through histological examinations of middle ear structures that 34/34 (100 %) of the mutant mice suffered from severe OME. While individual ears had different levels of effusion and inflammatory cells in the middle ear cavity, all had thickened middle ear mucosa and submucosa compared to control mice (B6). Moreover, the mutant mice displayed cochlear hair cell loss. These observations also suggested the craniofacial abnormalities in the gom1 mouse model. Together, these results indicate that gom1 mice could be valuable for investigating the genetic contribution to the development of middle ear disease.


Assuntos
Perda Auditiva , Otite Média com Derrame , Otite Média , Animais , Modelos Animais de Doenças , Orelha Média , Perda Auditiva/genética , Camundongos , Otite Média/genética , Otite Média/patologia , Otite Média com Derrame/complicações , Otite Média com Derrame/genética , Membrana Timpânica
2.
Biochem Biophys Res Commun ; 440(3): 413-8, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24090975

RESUMO

Cyclin D genes regulate the cell cycle, growth and differentiation in response to intercellular signaling. While the promoters of vertebrate cyclin D genes have been analyzed, the cis-regulatory sequences across an entire cyclin D locus have not. Doing so would increase understanding of how cyclin D genes respond to the regulatory states established by developmental gene regulatory networks, linking cell cycle and growth control to the ontogenetic program. Therefore, we conducted a cis-regulatory analysis on the cyclin D gene, SpcycD, of the sea urchin, Strongylocentrotus purpuratus, during embryogenesis, identifying upstream and intronic sequences, located within six defined regions bearing one or more cis-regulatory modules each.


Assuntos
Ciclina D/genética , Regulação da Expressão Gênica no Desenvolvimento , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Animais , Embrião não Mamífero/metabolismo , Redes Reguladoras de Genes , Regiões Promotoras Genéticas
3.
Mamm Genome ; 22(3-4): 156-69, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21161235

RESUMO

The inner ear consists of the cochlea (the organ of hearing) and the vestibular system (the organs of balance). Within the vestibular system, linear acceleration and gravity are detected by the saccule and utricle. Resting above the neurosensory epithelia of these organs are otoconia, minute proteinaceous and crystalline (calcite) inertial masses that shift under the physical forces imparted by linear movements and gravity. It is the transduction and sensation of these movements and their integration with vision and proprioceptive inputs that contribute to the sensation of balance. It has been proposed that a reactive oxygen species- (ROS-) generating NADPH oxidase comprising the gene products of the Nox3, Noxo1, and Cyba genes plays a critical and constructive role in the process of inner-ear development, specifically, the deposition of otoconia. Inactivation in mouse of any of the NADPH oxidase components encoded by the Nox3, Noxo1, or Cyba gene results in the complete congenital absence of otoconia and profound vestibular dysfunction. Here we describe our use of PCR, reverse transcription-PCR (RT-PCR), and rapid amplification of cDNA ends (RACE) with traditional and high-throughput (HTP) sequencing technologies to extend and complete the molecular characterization of an allelic series of seven mutations in the Nox3 gene. Collectively, the mutation spectrum includes an endogenous retrovirus insertion, two missense mutations, a splice donor mutation, a splice acceptor mutation, premature translational termination, and a small duplication. Together, these alleles provide tools to investigate the mechanisms of otoconial deposition over development, throughout aging, and in various disease states.


Assuntos
Orelha Interna/enzimologia , Camundongos/genética , Mutação , NADPH Oxidases/genética , Alelos , Animais , Sequência de Bases , Análise Mutacional de DNA , Orelha Interna/crescimento & desenvolvimento , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Dados de Sequência Molecular , NADPH Oxidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA