Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
ACS Biomater Sci Eng ; 6(10): 5811-5822, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320550

RESUMO

In vitro models of the human central nervous system (CNS), particularly those derived from induced pluripotent stem cells (iPSCs), are becoming increasingly recognized as useful complements to animal models for studying neurological diseases and developing therapeutic strategies. However, many current three-dimensional (3D) CNS models suffer from deficits that limit their research utility. In this work, we focused on improving the interactions between the extracellular matrix (ECM) and iPSC-derived neurons to support model development. The most common ECMs used to fabricate 3D CNS models often lack the necessary bioinstructive cues to drive iPSC-derived neurons to a mature and synaptically connected state. These ECMs are also typically difficult to pattern into complex structures due to their mechanical properties. To address these issues, we functionalized gelatin methacrylate (GelMA) with an N-cadherin (Cad) extracellular peptide epitope to create a biomaterial termed GelMA-Cad. After photopolymerization, GelMA-Cad forms soft hydrogels (on the order of 2 kPa) that can maintain patterned architectures. The N-cadherin functionality promotes survival and maturation of single-cell suspensions of iPSC-derived glutamatergic neurons into synaptically connected networks as determined by viral tracing and electrophysiology. Immunostaining reveals a pronounced increase in presynaptic and postsynaptic marker expression in GelMA-Cad relative to Matrigel, as well as extensive colocalization of these markers, thus highlighting the biological activity of the N-cadherin peptide. Overall, given its ability to enhance iPSC-derived neuron maturity and connectivity, GelMA-Cad should be broadly useful for in vitro studies of neural circuitry in health and disease.


Assuntos
Hidrogéis , Células-Tronco Pluripotentes Induzidas , Animais , Caderinas , Gelatina , Humanos , Redes Neurais de Computação
2.
J Endocr Soc ; 4(7): bvaa063, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32666009

RESUMO

Type 2 diabetes (T2D) has been rising in prevalence in the United States and worldwide over the past few decades and contributes to significant morbidity and premature mortality, primarily due to cardiovascular disease (CVD). Cardiorespiratory fitness (CRF) is a modifiable cardiovascular (CV) risk factor in the general population and in people with T2D. Young people and adults with T2D have reduced CRF when compared with their peers without T2D who are similarly active and of similar body mass index. Furthermore, the impairment in CRF conferred by T2D is greater in women than in men. Various factors may contribute to this abnormality in people with T2D, including insulin resistance and mitochondrial, vascular, and cardiac dysfunction. As proof of concept that understanding the mediators of impaired CRF in T2D can inform intervention, we previously demonstrated that an insulin sensitizer improved CRF in adults with T2D. This review focuses on how contributing factors influence CRF and why they may be compromised in T2D. Functional exercise capacity is a measure of interrelated systems biology; as such, the contribution of derangement in each of these factors to T2D-mediated impairment in CRF is complex and varied. Therefore, successful approaches to improve CRF in T2D should be multifaceted and individually designed. The current status of this research and future directions are outlined.

4.
Obesity (Silver Spring) ; 28(2): 303-314, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31903723

RESUMO

OBJECTIVE: The continuous endothelium of skeletal muscle (SkM) capillaries regulates insulin's access to skeletal myocytes. Whether impaired transendothelial insulin transport (EIT) contributes to SkM insulin resistance (IR), however, is unknown. METHODS: Male and female C57/Bl6 mice were fed either chow or a high-fat diet for 16 weeks. Intravital microscopy was used to measure EIT in SkM capillaries, electron microscopy to assess endothelial ultrastructure, and glucose tracers to measure indices of glucose metabolism. RESULTS: Diet-induced obesity (DIO) male mice were found to have a ~15% reduction in EIT compared with lean mice. Impaired EIT was associated with a 45% reduction in endothelial vesicles. Despite impaired EIT, hyperinsulinemia sustained delivery of insulin to the interstitial space in DIO male mice. Even with sustained interstitial insulin delivery, DIO male mice still showed SkM IR indicating severe myocellular IR in this model. Interestingly, there was no difference in EIT, endothelial ultrastructure, or SkM insulin sensitivity between lean female mice and female mice fed a high-fat diet. CONCLUSIONS: These results suggest that, in male mice, obesity results in ultrastructural alterations to the capillary endothelium that delay EIT. Nonetheless, the myocyte appears to exceed the endothelium as a contributor to SkM IR in DIO male mice.


Assuntos
Capilares/fisiologia , Endotélio Vascular/fisiopatologia , Insulina/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Masculino , Camundongos , Camundongos Obesos
5.
Am J Physiol Endocrinol Metab ; 317(6): E1022-E1036, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31526289

RESUMO

These studies test, using intravital microscopy (IVM), the hypotheses that perfusion effects on insulin-stimulated muscle glucose uptake (MGU) are 1) capillary recruitment independent and 2) mediated through the dispersion of glucose rather than insulin. For experiment 1, capillary perfusion was visualized before and after intravenous insulin. No capillary recruitment was observed. For experiment 2, mice were treated with vasoactive compounds (sodium nitroprusside, hyaluronidase, and lipopolysaccharide), and dispersion of fluorophores approximating insulin size (10-kDa dextran) and glucose (2-NBDG) was measured using IVM. Subsequently, insulin and 2[14C]deoxyglucose were injected and muscle phospho-2[14C]deoxyglucose (2[C14]DG) accumulation was used as an index of MGU. Flow velocity and 2-NBDG dispersion, but not perfused surface area or 10-kDa dextran dispersion, predicted phospho-2[14C]DG accumulation. For experiment 3, microspheres of the same size and number as are used for contrast-enhanced ultrasound (CEU) studies of capillary recruitment were visualized using IVM. Due to their low concentration, microspheres were present in only a small fraction of blood-perfused capillaries. Microsphere-perfused blood volume correlated to flow velocity. These findings suggest that 1) flow velocity rather than capillary recruitment controls microvascular contributions to MGU, 2) glucose dispersion is more predictive of MGU than dispersion of insulin-sized molecules, and 3) CEU measures regional flow velocity rather than capillary recruitment.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Glucose/metabolismo , Microcirculação/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Radioisótopos de Carbono , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Dextranos/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Microscopia Intravital , Camundongos , Microcirculação/efeitos dos fármacos , Microesferas , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia
6.
Diabetes ; 68(10): 1892-1901, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399432

RESUMO

Continuous glucose monitor (CGM) readings are delayed relative to blood glucose, and this delay is usually attributed to the latency of interstitial glucose levels. However, CGM-independent data suggest rapid equilibration of interstitial glucose. This study sought to determine the loci of CGM delays. Electrical current was measured directly from CGM electrodes to define sensor kinetics in the absence of smoothing algorithms. CGMs were implanted in mice, and sensor versus blood glucose responses were measured after an intravenous glucose challenge. Dispersion of a fluorescent glucose analog (2-NBDG) into the CGM microenvironment was observed in vivo using intravital microscopy. Tissue deposited on the sensor and nonimplanted subcutaneous adipose tissue was then collected for histological analysis. The time to half-maximum CGM response in vitro was 35 ± 2 s. In vivo, CGMs took 24 ± 7 min to reach maximum current versus 2 ± 1 min to maximum blood glucose (P = 0.0017). 2-NBDG took 21 ± 7 min to reach maximum fluorescence at the sensor versus 6 ± 6 min in adipose tissue (P = 0.0011). Collagen content was closely correlated with 2-NBDG latency (R = 0.96, P = 0.0004). Diffusion of glucose into the tissue deposited on a CGM is substantially delayed relative to interstitial fluid. A CGM that resists fibrous encapsulation would better approximate real-time deviations in blood glucose.


Assuntos
Automonitorização da Glicemia/instrumentação , Glicemia/análise , Falha de Equipamento , Gordura Subcutânea/patologia , Animais , Fibrose , Camundongos
7.
Stem Cell Reports ; 12(6): 1380-1388, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189096

RESUMO

Human induced pluripotent stem cell (iPSC)-derived developmental lineages are key tools for in vitro mechanistic interrogations, drug discovery, and disease modeling. iPSCs have previously been differentiated to endothelial cells with blood-brain barrier (BBB) properties, as defined by high transendothelial electrical resistance (TEER), low passive permeability, and active transporter functions. Typical protocols use undefined components, which impart unacceptable variability on the differentiation process. We demonstrate that replacement of serum with fully defined components, from common medium supplements to a simple mixture of insulin, transferrin, and selenium, yields BBB endothelium with TEER in the range of 2,000-8,000 Ω × cm2 across multiple iPSC lines, with appropriate marker expression and active transporters. The use of a fully defined medium vastly improves the consistency of differentiation, and co-culture of BBB endothelium with iPSC-derived astrocytes produces a robust in vitro neurovascular model. This defined differentiation scheme should broadly enable the use of human BBB endothelium for diverse applications.


Assuntos
Barreira Hematoencefálica/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Barreira Hematoencefálica/citologia , Meios de Cultura , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
8.
Am J Physiol Endocrinol Metab ; 316(6): E1012-E1023, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860883

RESUMO

Sepsis costs the healthcare system $23 billion annually and has a mortality rate between 10 and 40%. An early indication of sepsis is the onset of hyperglycemia, which is the result of sepsis-induced insulin resistance in skeletal muscle. Previous investigations have focused on events in the myocyte (e.g., insulin signaling and glucose transport and subsequent metabolism) as the causes for this insulin-resistant state. However, the delivery of insulin to the skeletal muscle is also an important determinant of insulin action. Skeletal muscle microvascular blood flow, which delivers the insulin to the muscle, is known to be decreased during sepsis. Here we test whether the reduced capillary blood flow to skeletal muscle belies the sepsis-induced insulin resistance by reducing insulin delivery to the myocyte. We hypothesize that decreased capillary flow and consequent decrease in insulin delivery is an early event that precedes gross cardiovascular alterations seen with sepsis. This hypothesis was examined in mice treated with either lipopolysaccharide (LPS) or polymicrobial sepsis followed by intravital microscopy of the skeletal muscle microcirculation. We calculated insulin delivery to the myocyte using two independent methods and found that LPS and sepsis rapidly reduce insulin delivery to the skeletal muscle by ~50%; this was driven by decreases in capillary flow velocity and the number of perfused capillaries. Furthermore, the changes in skeletal muscle microcirculation occur before changes in both cardiac output and arterial blood pressure. These data suggest that a rapid reduction in skeletal muscle insulin delivery contributes to the induction of insulin resistance during sepsis.


Assuntos
Capilares/metabolismo , Hiperglicemia/metabolismo , Resistência à Insulina , Insulina/metabolismo , Microcirculação , Músculo Esquelético/metabolismo , Sepse/metabolismo , Animais , Permeabilidade Capilar , Modelos Animais de Doenças , Ecocardiografia , Lipopolissacarídeos , Camundongos , Microvasos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/irrigação sanguínea
9.
Diabetes ; 67(10): 1962-1975, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30002132

RESUMO

Before insulin can stimulate glucose uptake in muscle, it must be delivered to skeletal muscle (SkM) through the microvasculature. Insulin delivery is determined by SkM perfusion and the rate of movement of insulin across the capillary endothelium. The endothelium therefore plays a central role in regulating insulin access to SkM. Nitric oxide (NO) is a key regulator of endothelial function and stimulates arterial vasodilation, which increases SkM perfusion and the capillary surface area available for insulin exchange. The effects of NO on transendothelial insulin efflux (TIE), however, are unknown. We hypothesized that acute reduction of endothelial NO would reduce TIE. However, intravital imaging of TIE in mice revealed that reduction of NO by l-NG-nitro-l-arginine methyl ester (l-NAME) enhanced the rate of TIE by ∼30% and increased total extravascular insulin delivery. This accelerated TIE was associated with more rapid insulin-stimulated glucose lowering. Sodium nitroprusside, an NO donor, had no effect on TIE in mice. The effects of l-NAME on TIE were not due to changes in blood pressure alone, as a direct-acting vasoconstrictor (phenylephrine) did not affect TIE. These results demonstrate that acute NO synthase inhibition increases the permeability of capillaries to insulin, leading to an increase in delivery of insulin to SkM.


Assuntos
Insulina/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Western Blotting , Glucose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
10.
Diabetes ; 67(7): 1369-1379, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29643061

RESUMO

Type 2 diabetes is associated with impaired exercise capacity. Alterations in both muscle perfusion and mitochondrial function can contribute to exercise impairment. We hypothesized that impaired muscle mitochondrial function in type 2 diabetes is mediated, in part, by decreased tissue oxygen delivery and would improve with oxygen supplementation. Ex vivo muscle mitochondrial content and respiration assessed from biopsy samples demonstrated expected differences in obese individuals with (n = 18) and without (n = 17) diabetes. Similarly, in vivo mitochondrial oxidative phosphorylation capacity measured in the gastrocnemius muscle via 31P-MRS indicated an impairment in the rate of ADP depletion with rest (27 ± 6 s [diabetes], 21 ± 7 s [control subjects]; P = 0.008) and oxidative phosphorylation (P = 0.046) in type 2 diabetes after isometric calf exercise compared with control subjects. Importantly, the in vivo impairment in oxidative capacity resolved with oxygen supplementation in adults with diabetes (ADP depletion rate 5.0 s faster, P = 0.012; oxidative phosphorylation 0.046 ± 0.079 mmol/L/s faster, P = 0.027). Multiple in vivo mitochondrial measures related to HbA1c These data suggest that oxygen availability is rate limiting for in vivo mitochondrial oxidative exercise recovery measured with 31P-MRS in individuals with uncomplicated diabetes. Targeting muscle oxygenation could improve exercise function in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Obesidade/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Oxigênio/administração & dosagem , Adulto , Idoso , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Exercício Físico/fisiologia , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/complicações , Obesidade/terapia , Oxigênio/farmacologia , Consumo de Oxigênio/fisiologia , Comportamento Sedentário
11.
Diabetes ; 67(5): 831-840, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29511026

RESUMO

Exercise alone is often ineffective for treating obesity despite the associated increase in metabolic requirements. Decreased nonexercise physical activity has been implicated in this resistance to weight loss, but the mechanisms responsible are unclear. We quantified the metabolic cost of nonexercise activity, or "off-wheel" activity (OWA), and voluntary wheel running (VWR) and examined whether changes in OWA during VWR altered energy balance in chow-fed C57BL/6J mice (n = 12). Energy expenditure (EE), energy intake, and behavior (VWR and OWA) were continuously monitored for 4 days with locked running wheels followed by 9 days with unlocked running wheels. Unlocking the running wheels increased EE as a function of VWR distance. The metabolic cost of exercise (kcal/m traveled) decreased with increasing VWR speed. Unlocking the wheel led to a negative energy balance but also decreased OWA, which was predicted to mitigate the expected change in energy balance by ∼45%. A novel behavioral circuit involved repeated bouts of VWR, and roaming was discovered and represented novel predictors of VWR behavior. The integrated analysis described here reveals that the weight loss effects of voluntary exercise can be countered by a reduction in nonexercise activity.


Assuntos
Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Atividade Motora/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Comportamento Animal , Calorimetria Indireta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Redução de Peso
12.
J Vasc Surg ; 68(1): 246-253, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28986100

RESUMO

OBJECTIVE: Central aortic stiffness and chronic obstructive pulmonary disease (COPD) are associated with increased incidence of devastating aortopathies. However, the exact mechanism leading to elevated aortic stiffness in patients with COPD is unknown. The purpose of this study was to quantify flow and shear hemodynamic indices, known markers of vascular remodeling, in the thoracic aorta of patients with mild to moderate COPD (n = 16) and to compare these results with an age-matched control group (n = 10). METHODS: Four-dimensional flow magnetic resonance imaging has been applied to measure hemodynamic wall shear stress (WSS) at four specific planes along the ascending aorta, aortic arch, and proximal descending aorta for all subjects. Peak systolic WSS and time-averaged WSS, which respectively reflect magnitude and temporal shear variability, were calculated at standardized planes. Aortic deformation was measured by means of relative area change (RAC) at the midlevel of the ascending and descending aorta. RESULTS: Compared with controls, patients with COPD had significantly reduced RAC in the mid ascending aorta (9% vs 18%; P < .0001) and descending aorta (15% vs 19%; P = .0206). Peak systolic WSS in COPD patients was significantly reduced in all considered planes, with the most dramatic difference occurring in the descending aorta (0.46 vs 0.86 N/m2; P < .0001). Peak systolic WSS and time-averaged WSS were both significantly correlated with aortic RAC at each evaluated plane. CONCLUSIONS: Reduced flow shear metrics assessed at specific aortic regions correlated with RAC, a marker of aortic stiffness. Reduced hemodynamic WSS may then contribute to central aortic stiffening and perpetuate the risk for development of severe aortopathy.


Assuntos
Aorta Torácica/fisiopatologia , Doenças da Aorta/etiologia , Hemodinâmica , Doença Pulmonar Obstrutiva Crônica/complicações , Rigidez Vascular , Idoso , Aorta Torácica/diagnóstico por imagem , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/fisiopatologia , Velocidade do Fluxo Sanguíneo , Estudos de Casos e Controles , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Angiografia por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Imagem de Perfusão/métodos , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fluxo Sanguíneo Regional , Fatores de Risco , Estresse Mecânico
13.
J Neurovirol ; 22(5): 674-682, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27245593

RESUMO

Varicella zoster virus (VZV) is a ubiquitous alphaherpesvirus that establishes latency in ganglionic neurons throughout the neuraxis after primary infection. Here, we show that VZV infection induces a time-dependent significant change in mitochondrial morphology, an important indicator of cellular health, since mitochondria are involved in essential cellular functions. VZV immediate-early protein 63 (IE63) was detected in mitochondria-rich cellular fractions extracted from infected human fetal lung fibroblasts (HFL) by Western blotting. IE63 interacted with cytochrome c oxidase in bacterial 2-hybrid analyses. Confocal microscopy of VZV-infected HFL cells at multiple times after infection revealed the presence of IE63 in the nucleus, mitochondria, and cytoplasm. Our data provide the first evidence that VZV infection induces alterations in mitochondrial morphology, including fragmentation, which may be involved in cellular damage and/or death during virus infection.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Fibroblastos/virologia , Herpesvirus Humano 3/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/genética , Mitocôndrias/virologia , Proteínas do Envelope Viral/genética , Morte Celular/genética , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feto , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos , Proteínas Imediatamente Precoces/metabolismo , Pulmão/citologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Envelope Viral/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 311(1): H168-76, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199117

RESUMO

Many common diseases involve impaired tissue perfusion, and heterogeneous distribution of blood flow in the microvasculature contributes to this pathology. The physiological mechanisms regulating homogeneity/heterogeneity of microvascular perfusion are presently unknown. Using established empirical formulations for blood viscosity modeling in vivo (blood vessels) and in vitro (glass tubes), we showed that the in vivo formulation predicts more homogenous perfusion of microvascular networks at the arteriolar and capillary levels. Next, we showed that the more homogeneous blood flow under simulated in vivo conditions can be explained by changes in red blood cell interactions with the vessel wall. Finally, we demonstrated that the presence of a space-filling, semipermeable layer (such as the endothelial glycocalyx) at the vessel wall can account for the changes of red blood cell interactions with the vessel wall that promote homogenous microvascular perfusion. Collectively, our results indicate that the mechanical properties of the endothelial glycocalyx promote homogeneous microvascular perfusion. Preservation or restoration of normal glycocalyx properties may be a viable strategy for improving tissue perfusion in a variety of diseases.


Assuntos
Arteríolas/fisiologia , Capilares/fisiologia , Células Endoteliais/fisiologia , Glicocálix/fisiologia , Hemorreologia , Microcirculação , Modelos Cardiovasculares , Arteríolas/anatomia & histologia , Viscosidade Sanguínea , Capilares/anatomia & histologia , Permeabilidade Capilar , Eritrócitos/fisiologia , Humanos , Técnicas Analíticas Microfluídicas , Fluxo Sanguíneo Regional
15.
Oxid Med Cell Longev ; 2016: 8524267, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034743

RESUMO

Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk. Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics. We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function. Primary smooth muscle cells (SMCs) from aorta of the nonobese, insulin resistant rat diabetes model Goto-Kakizaki (GK) and the Wistar control rat were exposed to high glucose (25 mM). At baseline, significantly greater nitric oxide evolution, ROS production, and respiratory control ratio (RCR) were observed in GK SMCs. Upon exposure to high glucose, expression of phosphorylated eNOS, uncoupled respiration, and expression of mitochondrial complexes I, II, III, and V were significantly decreased in GK SMCs (p < 0.05). Mitochondrial superoxide increased with high glucose in Wistar SMCs (p < 0.05) with no change in the GK beyond elevated baseline concentrations. Baseline comparisons show persistent metabolic perturbations in a diabetes phenotype. Overall, nutrient stress in GK SMCs caused a persistent decline in eNOS and mitochondrial function and disrupted mitochondrial plasticity, illustrating eNOS and mitochondria as potential therapeutic targets.


Assuntos
Adaptação Fisiológica , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Masculino , Mitocôndrias Musculares/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Superóxidos/metabolismo
16.
Data Brief ; 6: 998-1006, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26949731

RESUMO

The data included in this article comprise raw and processed images of fixed cells at baseline and subjected to various experimental perturbations. This dataset includes images of HUVEC cells fixed and subsequently incubated at either 37 °C or room temperature, primary rat vascular smooth muscle cells exposed to 25 mM glucose, and SH-SY5Y neurons exposed to hydrogen peroxide. Raw images appear exactly as they were captured on the microscope, while processed images show the binarization provided by software used for measurements of mitochondrial morphology. For in-depth discussion of the experiments and computational methods pertaining to this data, please refer to the corresponding research article titled "Fully automated software for quantitative measurements of mitochondrial morphology" (McClatchey et al., in press) [1].

17.
Mitochondrion ; 26: 58-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26688338

RESUMO

Mitochondria undergo dynamic changes in morphology in order to adapt to changes in nutrient and oxygen availability, communicate with the nucleus, and modulate intracellular calcium dynamics. Many recent papers have been published assessing mitochondrial morphology endpoints. Although these studies have yielded valuable insights, contemporary assessment of mitochondrial morphology is typically subjective and qualitative, precluding direct comparison of outcomes between different studies and likely missing many subtle effects. In this paper, we describe a novel software technique for measuring the average length, average width, spatial density, and intracellular localization of mitochondria from a fluorescent microscope image. This method was applied to distinguish baseline characteristics of Human Umbilical Vein Endothelial Cells (HUVECs), primary Goto-Kakizaki rat aortic smooth muscle cells (GK SMCs), primary Wistar rat aortic smooth muscle cells (Wistar SMCs), and SH-SY5Ys (human neuroblastoma cell line). Consistent with direct observation, our algorithms found SH-SY5Ys to have the greatest mitochondrial density, while HUVECs were found to have the longest mitochondria. Mitochondrial morphology responses to temperature, nutrient, and oxidative stressors were characterized to test algorithm performance. Large morphology changes recorded by the software agreed with direct observation, and subtle but consistent morphology changes were found that would not otherwise have been detected. Endpoints were consistent between experimental repetitions (R=0.93 for length, R=0.93 for width, R=0.89 for spatial density, and R=0.74 for localization), and maintained reasonable agreement even when compared to images taken with compromised microscope resolution or in an alternate imaging plane. These results indicate that the automated software described herein allows quantitative and objective characterization of mitochondrial morphology from fluorescent microscope images.


Assuntos
Aorta/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Processamento de Imagem Assistida por Computador/métodos , Mitocôndrias Musculares , Músculo Liso Vascular/citologia , Software , Animais , Humanos , Microscopia de Fluorescência/métodos , Ratos
18.
J Cell Sci ; 128(20): 3731-43, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26349809

RESUMO

Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell-cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner.


Assuntos
Quimiotaxia , Selectina-P/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Cromatografia , Humanos , Metástase Neoplásica
19.
PLoS Comput Biol ; 10(9): e1003819, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188228

RESUMO

The pancreatic islets of Langerhans are multicellular micro-organs integral to maintaining glucose homeostasis through secretion of the hormone insulin. ß-cells within the islet exist as a highly coupled electrical network which coordinates electrical activity and insulin release at high glucose, but leads to global suppression at basal glucose. Despite its importance, how network dynamics generate this emergent binary on/off behavior remains to be elucidated. Previous work has suggested that a small threshold of quiescent cells is able to suppress the entire network. By modeling the islet as a Boolean network, we predicted a phase-transition between globally active and inactive states would emerge near this threshold number of cells, indicative of critical behavior. This was tested using islets with an inducible-expression mutation which renders defined numbers of cells electrically inactive, together with pharmacological modulation of electrical activity. This was combined with real-time imaging of intracellular free-calcium activity [Ca2+]i and measurement of physiological parameters in mice. As the number of inexcitable cells was increased beyond ∼15%, a phase-transition in islet activity occurred, switching from globally active wild-type behavior to global quiescence. This phase-transition was also seen in insulin secretion and blood glucose, indicating physiological impact. This behavior was reproduced in a multicellular dynamical model suggesting critical behavior in the islet may obey general properties of coupled heterogeneous networks. This study represents the first detailed explanation for how the islet facilitates inhibitory activity in spite of a heterogeneous cell population, as well as the role this plays in diabetes and its reversal. We further explain how islets utilize this critical behavior to leverage cellular heterogeneity and coordinate a robust insulin response with high dynamic range. These findings also give new insight into emergent multicellular dynamics in general which are applicable to many coupled physiological systems, specifically where inhibitory dynamics result from coupled networks.


Assuntos
Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Modelos Biológicos , Biologia de Sistemas/métodos , Animais , Glicemia , Insulina/metabolismo , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA