Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Open Biol ; 9(9): 190147, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31530095

RESUMO

Protein ubiquitination is of great cellular importance through its central role in processes such as degradation, DNA repair, endocytosis and inflammation. Canonical ubiquitination takes place on lysine residues, but in the past 15 years non-lysine ubiquitination on serine, threonine and cysteine has been firmly established. With the emerging importance of non-lysine ubiquitination, it is crucial to identify the responsible molecular machinery and understand the mechanistic basis for non-lysine ubiquitination. Here, we first provide an overview of the literature that has documented non-lysine ubiquitination. Informed by these examples, we then discuss the molecular mechanisms and cellular implications of non-lysine ubiquitination, and conclude by outlining open questions and future perspectives in the field.


Assuntos
Proteínas/metabolismo , Ubiquitinação , Animais , Retículo Endoplasmático/metabolismo , Humanos , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell Stress Chaperones ; 23(5): 1101-1115, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29808299

RESUMO

Numerous putative heat shock protein 90 (Hsp90)-interacting proteins, which could represent novel folding clients or co-chaperones, have been identified in recent years. Two separate high-throughput screens in yeast uncovered genetic effects between Hsp90 and components of the ER membrane complex (EMC), which is required for tolerance to unfolded protein response stress in yeast. Herein, we provide the first experimental evidence supporting that there is a genuine interaction of Hsp90 with the EMC. We demonstrate genetic interactions between EMC2 and the known Hsp90 co-chaperone encoded by STI1, as well as Hsp90 point mutant allele-specific differences in inherent growth and Hsp90 inhibitor tolerance in the absence and presence of EMC2. In co-precipitation experiments, Hsp90 interacts with Emc2p, whether or not Emc2p contains amino acid sequences designated as a tetratricopeptide repeat motif. Yeast with multiple EMC gene deletions exhibit increased sensitivity to Hsp90 inhibitor as well as defective folding of the well-established Hsp90 folding client, the glucocorticoid receptor. Altogether, our evidence of physical, genetic, and functional interaction of Hsp90 with the EMC, as well as bioinformatic analysis of shared interactors, supports that there is a legitimate interaction between them in vivo.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
PLoS One ; 6(11): e28211, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22140548

RESUMO

Hsp90 is an essential eukaryotic chaperone with a role in folding specific "client" proteins such as kinases and hormone receptors. Previously performed homozygous diploid yeast deletion collection screens uncovered broad requirements for Hsp90 in cellular transport and cell cycle progression. These screens also revealed that the requisite cellular functions of Hsp90 change with growth temperature. We present here for the first time the results of heterozygous deletion collection screens conducted at the hypothermic stress temperature of 15°C. Extensive bioinformatic analyses were performed on the resulting data in combination with data from homozygous and heterozygous screens previously conducted at normal (30°C) and hyperthermic stress (37°C) growth temperatures. Our resulting meta-analysis uncovered extensive connections between Hsp90 and (1) general transcription, (2) ribosome biogenesis and (3) GTP binding proteins. Predictions from bioinformatic analyses were tested experimentally, supporting a role for Hsp90 in ribosome stability. Importantly, the integrated analysis of the 15°C heterozygous deletion pool screen with previously conducted 30°C and 37°C screens allows for essential genetic targets of Hsp90 to emerge. Altogether, these novel contributions enable a more complete picture of essential Hsp90 functions.


Assuntos
Deleção de Genes , Testes Genéticos , Proteínas de Choque Térmico HSP90/metabolismo , Heterozigoto , Saccharomyces cerevisiae/genética , Bases de Dados Genéticas , Proteínas de Ligação ao GTP/metabolismo , Redes Reguladoras de Genes/genética , Homozigoto , Funções Verossimilhança , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta/genética , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura
5.
Cell ; 131(1): 121-35, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17923092

RESUMO

A comprehensive understanding of the cellular functions of the Hsp90 molecular chaperone has remained elusive. Although Hsp90 is essential, highly abundant under normal conditions, and further induced by environmental stress, only a limited number of Hsp90 "clients" have been identified. To define Hsp90 function, a panel of genome-wide chemical-genetic screens in Saccharomyces cerevisiae were combined with bioinformatic analyses. This approach identified several unanticipated functions of Hsp90 under normal conditions and in response to stress. Under normal growth conditions, Hsp90 plays a major role in various aspects of the secretory pathway and cellular transport; during environmental stress, Hsp90 is required for the cell cycle, meiosis, and cytokinesis. Importantly, biochemical and cell biological analyses validated several of these Hsp90-dependent functions, highlighting the potential of our integrated global approach to uncover chaperone functions in the cell.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transporte Biológico/fisiologia , Ciclo Celular/fisiologia , Biologia Computacional , Deleção de Genes , Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretórias/metabolismo
6.
Mol Cell ; 24(1): 25-37, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17018290

RESUMO

The ring-shaped hetero-oligomeric chaperonin TRiC/CCT uses ATP to fold a diverse subset of eukaryotic proteins. To define the basis of TRiC/CCT substrate recognition, we mapped the chaperonin interactions with the VHL tumor suppressor. VHL has two well-defined TRiC binding determinants. Each determinant contacts a specific subset of chaperonin subunits, indicating that TRiC paralogs exhibit distinct but overlapping specificities. The substrate binding site in these subunits localizes to a helical region in the apical domains that is structurally equivalent to that of bacterial chaperonins. Transferring the distal portion of helix 11 between TRiC subunits suffices to transfer specificity for a given substrate motif. We conclude that the architecture of the substrate binding domain is evolutionarily conserved among eukaryotic and bacterial chaperonins. The unique combination of specificity and plasticity in TRiC substrate binding may diversify the range of motifs recognized by this chaperonin and contribute to its unique ability to fold eukaryotic proteins.


Assuntos
Chaperoninas/fisiologia , Células Eucarióticas/metabolismo , Subunidades Proteicas/fisiologia , Motivos de Aminoácidos , Sítios de Ligação , Chaperoninas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/classificação , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
7.
Nat Cell Biol ; 7(8): 736-41, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16056264

RESUMO

Achieving the correct balance between folding and degradation of misfolded proteins is critical for cell viability. The importance of defining the mechanisms and factors that mediate cytoplasmic quality control is underscored by the growing list of diseases associated with protein misfolding and aggregation. Molecular chaperones assist protein folding and also facilitate degradation of misfolded polypeptides by the ubiquitin-proteasome system. Here we discuss emerging links between folding and degradation machineries and highlight challenges for future research.


Assuntos
Chaperonas Moleculares/fisiologia , Dobramento de Proteína , Proteínas/metabolismo , Animais , Sítios de Ligação/genética , Humanos , Modelos Biológicos , Mutação/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Proteínas/química , Proteínas/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Cell ; 121(5): 739-48, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15935760

RESUMO

The mechanisms by which molecular chaperones assist quality control of cytosolic proteins are poorly understood. Analysis of the chaperone requirements for degradation of misfolded variants of a cytosolic protein, the VHL tumor suppressor, reveals that distinct chaperone pathways mediate its folding and quality control. While both folding and degradation of VHL require Hsp70, the chaperonin TRiC is essential for folding but is dispensable for degradation. Conversely, the chaperone Hsp90 neither participates in VHL folding nor is required to maintain misfolded VHL solubility but is essential for its degradation. The cochaperone HOP/Sti1p also participates in VHL quality control and may direct the triage decision by bridging the Hsp70-Hsp90 interaction. Our finding that a distinct chaperone complex is uniquely required for quality control provides evidence for active and specific chaperone participation in triage decisions and suggests that a hierarchy of chaperone interactions can control the alternate fates of a cytosolic protein.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Dobramento de Proteína , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células Cultivadas , Proteínas de Choque Térmico/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau
9.
Mol Cell Biol ; 23(9): 3141-51, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12697815

RESUMO

The degree of cooperation and redundancy between different chaperones is an important problem in understanding how proteins fold in the cell. Here we use the yeast Saccharomyces cerevisiae as a model system to examine in vivo the chaperone requirements for assembly of the von Hippel-Lindau protein (VHL)-elongin BC (VBC) tumor suppressor complex. VHL and elongin BC expressed in yeast assembled into a correctly folded VBC complex that resembles the complex from mammalian cells. Unassembled VHL did not fold and remained associated with the cytosolic chaperones Hsp70 and TRiC/CCT, in agreement with results from mammalian cells. Analysis of the folding reaction in yeast strains carrying conditional chaperone mutants indicates that incorporation of VHL into VBC requires both functional TRiC and Hsp70. VBC assembly was defective in cells carrying either a temperature-sensitive ssa1 gene as their sole source of cytosolic Hsp70/SSA function or a temperature-sensitive mutation in CCT4, a subunit of the TRiC/CCT complex. Analysis of the VHL-chaperone interactions in these strains revealed that the cct4ts mutation decreased binding to TRiC but did not affect the interaction with Hsp70. In contrast, loss of Hsp70 function disrupted the interaction of VHL with both Hsp70 and TRiC. We conclude that, in vivo, folding of some polypeptides requires the cooperation of Hsp70 and TRiC and that Hsp70 acts to promote substrate binding to TRiC.


Assuntos
Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ligases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Adenosina Trifosfatases , Chaperonina com TCP-1 , Chaperoninas/genética , Citosol/metabolismo , Elonguina , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Supressores de Tumor , Proteínas de Choque Térmico HSP70/genética , Humanos , Ligases/genética , Substâncias Macromoleculares , Proteínas Associadas aos Microtúbulos/genética , Chaperonas Moleculares/metabolismo , Mutação , Proteínas Nucleares/genética , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau , Região do Complexo-t do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA