Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620079

RESUMO

Factor X (FX)-deficiency is a rare bleeding disorder manifesting a bleeding tendency caused by low FX activity levels. We aimed to explore the use of fitusiran (an investigational siRNA that silences antithrombin expression) to increase thrombin generation and the in vivo hemostatic potential under conditions of FX-deficiency. We therefore developed a novel model of inducible FX-deficiency, generating mice expressing <1% FX activity and antigen (f10low-mice). Compared to control f10WT-mice, f10low-mice had 6- and 4-fold prolonged clotting times in Prothrombin Time- and activated Partial Prothrombin Time-assays, respectively (p<0.001). Thrombin generation was severely reduced, irrespective whether tissue factor or factor XIa was used as initiator. In vivo analysis revealed near-absent thrombus formation in a laser-induced vessel injury-model. Furthermore, in two distinct bleeding models, f10low-mice displayed an increased bleeding tendency compared to f10WT-mice. In the tail-clip assay blood loss was increased from 12±16 microliter to 590±335 microliter (p<0.0001). In the saphenous vein puncture (SVP)-model, the number of clots generated was reduced from 19±5 clots/30 min for f10WT-mice to 2±2 clots/30 min (p<0.0001) for f10low-mice. In both models, bleeding was corrected upon infusion of purified FX. Treatment of f10low-mice with fitusiran (2x10 mg/kg at one-week interval) resulted in 17±6% residual antithrombin activity and increased thrombin generation (4-fold and 2-3-fold increase in endogenous thrombin potential and thrombin peak, respectively). In the SVP-model, the number of clots was increased to 8±6 clots/30 min (p=0.0029). Altogether, we demonstrate that reduction of antithrombin levels is associated with improved hemostatic activity under conditions of FX-deficiency.

2.
Immunobiology ; 228(6): 152707, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633063

RESUMO

The immune complement and the coagulation systems are blood-based proteolytic cascades that are activated by pathway-specific triggers, based on protein-protein interactions and enzymatic cleavage reactions. Activation of these systems is finely balanced and controlled through specific regulatory mechanisms. The complement and coagulation systems are generally viewed as distinct, but have common evolutionary origins, and several interactions between these homologous systems have been reported. This complement and coagulation crosstalk can affect activation, amplification and regulatory functions in both systems. In this review, we summarize the literature on coagulation factors contributing to complement alternative pathway activation and regulation and highlight molecular interactions of the complement alternative pathway regulator factor H with several coagulation factors. We propose a mechanism where factor H interactions with coagulation factors may contribute to both complement and coagulation activation and regulation within the haemostatic system and fibrin clot microenvironment and introduce the emerging role of factor H as a modulator of coagulation. Finally, we discuss the potential impact of these protein interactions in diseases associated with factor H dysregulation or deficiency as well as evidence of coagulation dysfunction.


Assuntos
Fator H do Complemento , Trombose , Humanos , Coagulação Sanguínea/fisiologia , Fatores de Coagulação Sanguínea/metabolismo , Proteínas do Sistema Complemento/metabolismo , Ativação do Complemento
3.
J Thromb Haemost ; 21(11): 3268-3278, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37207862

RESUMO

BACKGROUND: X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia (XMEN) disease is a primary immunodeficiency due to loss-of-function mutations in the gene encoding for magnesium transporter 1 (MAGT1). Furthermore, as MAGT1 is involved in the N-glycosylation process, XMEN disease is classified as a congenital disorder of glycosylation. Although XMEN-associated immunodeficiency is well described, the mechanisms underlying platelet dysfunction and those responsible for life-threatening bleeding events have never been investigated. OBJECTIVES: To assess platelet functions in patients with XMEN disease. METHODS: Two unrelated young boys, including one before and after hematopoietic stem cell transplantation, were investigated for their platelet functions, glycoprotein expression, and serum and platelet-derived N-glycans. RESULTS: Platelet analysis highlighted abnormal elongated cells and unusual barbell-shaped proplatelets. Platelet aggregation, integrin αIIbß3 activation, calcium mobilization, and protein kinase C activity were impaired between both patients. Strikingly, platelet responses to protease-activated receptor 1 activating peptide were absent at both low and high concentrations. These defects were also associated with decreased molecular weights of glycoprotein Ibα, glycoprotein VI, and integrin αIIb due to partial impairment of N-glycosylation. All these defects were corrected after hematopoietic stem cell transplantation. CONCLUSION: Our results highlight prominent platelet dysfunction related to MAGT1 deficiency and defective N-glycosylation in several platelet proteins that could explain the hemorrhages reported in patients with XMEN disease.


Assuntos
Infecções por Vírus Epstein-Barr , Magnésio , Masculino , Humanos , Magnésio/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Glicosilação , Herpesvirus Humano 4/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA