Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biofabrication ; 15(1)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36150372

RESUMO

The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells' health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing.


Assuntos
Tecnologia Farmacêutica , Engenharia Tecidual , Controle de Qualidade , Medicina Regenerativa
2.
Acta Biomater ; 100: 173-183, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31546030

RESUMO

Fibrillar collagens are highly prevalent in the extracellular matrix of all connective tissues and therefore commonly used as a biomaterial in tissue engineering applications. In the native environment, collagen fibers are arranged in a complex hierarchical structure that is often difficult to recreate in a tissue engineered construct. Small leucine rich proteoglycans as well as hyaluronan binding proteoglycans, aggrecan and versican, have been implicated in regulating fiber formation. In this study, we modified proteoglycan production in vitro by altering culture medium glucose concentrations (4500, 1000, 500, 250, and 125 mg/L), and evaluated its effect on the formation of collagen fibers inside tissue engineered meniscal constructs. Reduction of extracellular glucose resulted in a dose dependent decrease in total sulfated glycosaminoglycan (GAG) production, but minimal decreases of decorin and biglycan. However, fibromodulin doubled in production between 125 and 4500 mg/L glucose concentration. A peak in fiber formation was observed at 500 mg/L glucose concentration and corresponded with reductions in total GAG production. Fiber formation reduction at 125 and 250 mg/L glucose concentrations are likely due to changes in metabolic activity associated with a limited supply of glucose. These results point to proteoglycan production as a means to manipulate fiber architecture in tissue engineered constructs. STATEMENT OF SIGNIFICANCE: Fibrillar collagens are highly prevalent in the extracellular matrix of all connective tissues; however achieving appropriate assembly and organization of collagen fibers in engineered connective tissues is a persistent challenge. Proteoglycans have been implicated in regulating collagen fiber organization both in vivo and in vitro, however little is known about methods to control proteoglycan production and the subsequent fiber organization in tissue engineered menisci. Here, we show that media glucose content can be optimized to control proteoglycan production and collagen fiber assembly, with optimal collagen fiber assembly occurring at sub-physiologic levels of glucose.


Assuntos
Colágenos Fibrilares/metabolismo , Glucose/farmacologia , Menisco/fisiologia , Proteoglicanas/biossíntese , Engenharia Tecidual/métodos , Animais , Bovinos , Decorina/metabolismo , Fibromodulina/metabolismo , Menisco/efeitos dos fármacos , Alicerces Teciduais/química
3.
ACS Biomater Sci Eng ; 5(6): 2988-2997, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211246

RESUMO

Materials engineering can generally be divided into "bottom-up" and "top-down" approaches, where current state-of-the-art methodologies are bottom-up, relying on the advent of atomic-scale technologies. Applying bottom-up approaches to biological tissues is challenging due to the inherent complexity of these systems. Top-down methodologies provide many advantages over bottom-up approaches for biological tissues, given that some of the complexity is already built into the system. Here, we generate interfacial scaffolds by the spatially controlled removal of mineral content from trabecular bone using a chelating solution. We controlled the degree and location of the mineral interface, producing scaffolds that support cell growth, while maintaining the hierarchical structure of these tissues. We characterized the structural and compositional gradients across the scaffold using X-ray diffraction, microcomputed tomography (µCT), and Raman microscopy, revealing the presence of mineral gradients on the scale of 20 - 40 µm. Using these data, we generated a model showing the dependence of mineral removal as function of time in the chelating solution and initial bone morphology, specifically trabecular density. These scaffolds will be useful for interfacial tissue engineering, with application in the fields of orthopedics, developmental biology, and cancer metastasis to bone.

4.
Adv Healthc Mater ; 8(7): e1800806, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536862

RESUMO

Tissue-engineered menisci hold promise as an alternative to allograft procedures but require a means of robust fixation to the native bone. The insertion of the meniscus into bone is critical for meniscal function and inclusion of a soft tissue-to-bone interface in a tissue engineered implant can aid in the fixation process. The native insertion is characterized by gradients in composition, tissue architecture, and cellular phenotype, which are all difficult to replicate. In this study, a soft tissue-to-bone interface is tissue engineered with a cellular gradient of fibrochondrocytes and mesenchymal stem cells and subjected to a biochemical gradient through a custom media diffusion bioreactor. These constructs, consisting of interpenetrating collagen and boney regions, display improved mechanical performance and collagen organization compared to controls without a cellular or chemical gradient. Media gradient exposure produces morphological features in the constructs that appear similar to the native tissue. Collectively, these data show that cellular and biochemical gradients improve integration between collagen and bone in a tissue engineered soft tissue-to-bone construct.


Assuntos
Osso e Ossos/fisiologia , Menisco/fisiologia , Engenharia Tecidual , Animais , Bovinos , Colágeno/química , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Resistência à Tração , Alicerces Teciduais/química
5.
Acta Biomater ; 58: 413-420, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576717

RESUMO

Secure closure of the fascial layers after entry into the peritoneal cavity is crucial to prevent incisional hernia, yet appropriate purchase of the tissue can be challenging due to the proximity of the underlying protuberant bowel which may become punctured by the surgical needle or strangulated by the suture itself. Devices currently employed to provide visceral protection during abdominal closure, such as the metal malleable retractor and Glassman Visceral Retainer, are unable to provide complete protection as they must be removed prior to complete closure. A puncture resistant, biocompatible, and degradable matrix that can be left in place without need for removal would facilitate rapid and safe abdominal closure. We describe a novel elastomer (CC-DHA) that undergoes a rapid but controlled solid-to-liquid phase transition through the application of a destabilized carbonate cross-linked network. The elastomer is comprised of a polycarbonate cross-linked network of dihydroxyacetone, glycerol ethoxylate, and tri(ethylene glycol). The ketone functionality of the dihydroxyacetone facilitates hydrolytic cleavage of the carbonate linkages resulting in a rapidly degrading barrier that can be left in situ to facilitate abdominal fascial closure. Using a murine laparotomy model we demonstrated rapid dissolution and metabolism of the elastomer without evidence of toxicity or intraabdominal scarring. Furthermore, needle puncture and mechanical properties demonstrated the material to be both compliant and sufficiently puncture resistant. These unique characteristics make the biomaterial extraordinarily useful as a physical barrier to prevent inadvertent bowel injury during fascial closure, with the potential for wider application across a variety of medical and surgical applications. STATEMENT OF SIGNIFICANCE: Fascial closure after abdominal surgery requires delicate maneuvers to prevent incisional hernia while minimizing risk for inadvertent bowel injury. We describe a novel biocompatible and biodegradable polycarbonate elastomer (CC-DHA) comprised of dihydroxyacetone, glycerol ethoxylate, and tri(ethylene glycol), for use as a rapidly degrading protective visceral barrier to aid in abdominal closure. Rapid polymer dissolution and metabolism was demonstrated using a murine laparotomy model without evidence of toxicity or intraabdominal scarring. Furthermore, mechanical studies showed the material to be sufficiently puncture resistant and compliant. Overall, this new biomaterial is extraordinary useful as a physical barrier to prevent inadvertent bowel injury during fascial closure, with the potential for wider application across a variety of medical and surgical applications.


Assuntos
Abdome/cirurgia , Elastômeros/farmacologia , Laparoscopia/métodos , Técnicas de Fechamento de Ferimentos/mortalidade , Animais , Masculino , Camundongos
6.
MRS Commun ; 7(3): 289-308, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29333332

RESUMO

Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.

7.
Acta Biomater ; 56: 110-117, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27989921

RESUMO

The meniscus acts as a stabilizer, lubricator, and load distributer in the knee joint. The mechanical stability of the meniscus depends on its connection to the underlying bone by a fibrocartilage to bone transition zone called the meniscal enthesis. Tissue engineered menisci hold great promise as a treatment alternative however lack a means of integrated fixation to the underlying bone needed in order for a tissue engineered meniscal replacement to be successful. Tissue engineering the meniscal enthesis is a difficult task given the complex gradients of cell type, mineral, and extracellular matrix molecules. Therefore, there is a need for a simplified and high throughput enthesis model to test experimental parameters. The goal of this study was to develop a simplified enthesis model to test collagen integration with decellularized bone. We found that injection molding collagen into tubing loaded with decellularized bone plugs resulted in a scaffold with three regions: bone, bone-collagen, and collagen. Furthermore, collagen formation was directed in the axial direction by using mechanical fixation at the bony ends. The results of this study showed that this technique can be used to mimic the native enthesis morphology and serves as ideal test platform to generate a model tissue engineered enthesis. STATEMENT OF SIGNIFICANCE: The meniscal enthesis is a complex structure that is essential to mechanical stability of the meniscus and the knee joint. Several studies document the development of anatomically shaped tissue engineered meniscus constructs, but none have focused on how to integrate such tissues with underlying bone. This study establishes a simplified construct to model the meniscal enthesis composed of a collagen gel seeded with meniscal fibrochondrocytes integrated with decellularized cancellous bone. Mechanical fixation at the bony ends induced tissue integration of fibers into the bony tissue, which is critical for mechanical performance and has yet to be shown in enthesis literature. Our test platform is amenable to targeted experiments investigating mineralization gradients, collagen fiber alignment, cell population phenotype, and media conditioning with experimental impact on enthesis studies for meniscus, tendon, and ligament.


Assuntos
Colágeno/química , Menisco/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bovinos
8.
Connect Tissue Res ; 58(3-4): 329-341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27925474

RESUMO

Mesenchymal stem cells (MSCs) have been investigated with promising results for meniscus healing and tissue engineering. While MSCs are known to contribute to extracellular matrix (ECM) production, less is known about how MSCs produce and align large organized fibers for application to tissue engineering the meniscus. The goal of this study was to investigate the capability of MSCs to produce and organize ECM molecules compared to meniscal fibrochondrocytes (FCCs). Bovine FCCs and MSCs were encapsulated in an anatomically accurate collagen meniscus using monoculture and co-culture of each cell type. Each meniscus was mechanically anchored at the horns to mimic the physiological fixation by the meniscal entheses. Mechanical fixation generates a static mechanical boundary condition previously shown to induce formation of oriented fiber by FCCs. Samples were cultured for 4 weeks and then evaluated for biochemical composition and fiber development. MSCs increased the glycosaminoglycan (GAG) and collagen production in both co-culture and monoculture groups compared to FCC monoculture. Collagen organization was greatest in the FCC monoculture group. While MSCs had increased matrix production, they lacked the fiber organization capabilities of FCCs. This study suggests that GAG production and fiber formation are linked. Co-culture can be used as a means of balancing the synthetic properties of MSCs and the matrix remodeling capabilities of FCCs for tissue engineering applications.


Assuntos
Condrócitos/citologia , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Menisco/fisiologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Animais , Fenômenos Biomecânicos , Bovinos , Forma Celular , Células Cultivadas , Colágeno/ultraestrutura , Géis , Glicosaminoglicanos/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
9.
Stem Cell Res Ther ; 7: 39, 2016 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-26971202

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (MSCs) have shown positive therapeutic effects for meniscus regeneration and repair. Preliminary in vitro work has indicated positive results for MSC applications for meniscus tissue engineering; however, more information is needed on how to direct MSC behavior. The objective of this study was to examine the effect of MSC co-culture with primary meniscal fibrochondrocytes (FCCs) in a three-dimensional collagen scaffold in fibrochondrogenic media. Co-culture of MSCs and FCCs was hypothesized to facilitate the transition of MSCs to a FCC cell phenotype as measured by matrix secretion and morphology. METHODS: MSCs and FCCs were isolated from bovine bone marrow and meniscus, respectively. Cells were seeded in a 20 mg/mL high-density type I collagen gel at MSC:FCC ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. Constructs were cultured for up to 2 weeks and then analyzed for cell morphology, glycosaminoglycan content, collagen content, and production of collagen type I, II, and X. RESULTS: Cells were homogeneously mixed throughout the scaffold and cells had limited direct cell-cell contact. After 2 weeks in culture, MSCs transitioned from a spindle-like morphology toward a rounded phenotype, while FCCs remained rounded throughout culture. Although MSC shape changed with culture, the overall size was significantly larger than FCCs throughout culture. While 75:25 and 100:0 (MSC mono-culture) culture groups produced significantly more glycosaminoglycan (GAG)/DNA than FCCs in mono-culture, GAG retention was highest in 50:50 co-cultures. Similarly, the aggregate modulus was highest in 100:0 and 50:50 co-cultures. All samples contained both collagen types I and II after 2 weeks, and collagen type X expression was evident only in MSC mono-culture gels. CONCLUSIONS: MSCs shift to a FCC morphology in both mono- and co-culture. Co-culture reduced hypertrophy by MSCs, indicated by collagen type X. This study shows that MSC phenotype can be influenced by indirect homogeneous cell culture in a three-dimensional gel, demonstrating the applicability of MSCs in meniscus tissue engineering applications.


Assuntos
Condrócitos/fisiologia , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/fisiologia , Animais , Fenômenos Biomecânicos , Bovinos , Técnicas de Cultura de Células , Forma Celular , Células Cultivadas , Técnicas de Cocultura , Permeabilidade , Medicina Regenerativa , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA