Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Methods Enzymol ; 680: 217-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710012

RESUMO

One of the hallmarks of specialized plant metabolites is that they are produced using precursors from central metabolism. Therefore, in addition to identifying and characterizing the pathway genes and enzymes involved in synthesizing a specialized compound, it is critical to study its metabolic origins. Identifying what primary metabolic pathways supply precursors to specialized metabolism and how primary metabolism has diversified to sustain fluxes to specialized metabolite pathways is imperative to optimizing synthetic biology strategies for producing high-value plant natural products in crops and microbial systems. Improved understanding of the metabolic origins of specialized plant metabolites has also revealed instances of recurrent evolution of the same compound, or nearly identical compounds, with similar ecological functions, thereby expanding knowledge about the factors driving the chemical diversity in the plant kingdom. In this chapter, we describe detailed methods for performing tracer studies, chemical inhibitor experiments, and reverse genetics. We use examples from investigations of the metabolic origins of specialized plant 1,4-naphthoquinones (1,4-NQs). The plant 1,4-NQs provide an excellent case study for illustrating the importance of investigating the metabolic origins of specialized metabolites. Over half a century of research by many groups has revealed that the pathways to synthesize plant 1,4-NQs are the result of multiple events of convergent evolution across several disparate plant lineages and that plant 1,4-NQ pathways are supported by extraordinary events of metabolic innovation and by various primary metabolic sources.


Assuntos
Naftoquinonas , Naftoquinonas/metabolismo , Plantas/metabolismo , Redes e Vias Metabólicas
2.
Plant Direct ; 6(2): e382, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35169675

RESUMO

In plants, most competition is resource competition, where one plant simply preempts the resources away from its neighbors. Interference competition, as the name implies, is a form of direct interference to prevent resource access. Interference competition is common among animals that can physically fight, but in plants, one of the main mechanisms of interference competition is allelopathy. Allelopathic plants release cytotoxic chemicals into the environment which can increase their ability to compete with surrounding organisms for limited resources. The circumstances and conditions favoring the development and maintenance of allelochemicals, however, are not well understood. Particularly, despite the obvious benefits of allelopathy, current data suggest it seems to have only rarely evolved. To gain insight into the cost and benefit of allelopathy, we have developed a 2 × 2 matrix game to model the interaction between plants that produce allelochemicals and plants that do not. Production of an allelochemical introduces novel cost associated with both synthesis and detoxifying a toxic chemical but may also convey a competitive advantage. A plant that does not produce an allelochemical will suffer the cost of encountering one. Our model predicts three cases in which the evolutionarily stable strategies are different. In the first, the nonallelopathic plant is a stronger competitor, and not producing allelochemicals is the evolutionarily stable strategy. In the second, the allelopathic plant is the better competitor, and production of allelochemicals is the more beneficial strategy. In the last case, neither is the evolutionarily stable strategy. Instead, there are alternating stable states, depending on whether the allelopathic or nonallelopathic plant arrived first. The generated model reveals circumstances leading to the evolution of allelochemicals and sheds light on utilizing allelochemicals as part of weed management strategies. In particular, the wide region of alternative stable states in most parameterizations, combined with the fact that the absence of allelopathy is likely the ancestral state, provides an elegant answer to the question of why allelopathy seems to rarely evolve despite its obvious benefits. Allelopathic plants can indeed outcompete nonallelopathic plants, but this benefit is simply not great enough to allow them to go to fixation and spread through the population. Thus, most populations would remain purely nonallelopathic.

3.
Plants (Basel) ; 10(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668664

RESUMO

Upon sensing developmental or environmental cues, epigenetic regulators transform the chromatin landscape of a network of genes to modulate their expression and dictate adequate cellular and organismal responses. Knowledge of the specific biological processes and genomic loci controlled by each epigenetic regulator will greatly advance our understanding of epigenetic regulation in plants. To facilitate hypothesis generation and testing in this domain, we present EpiNet, an extensive gene regulatory network (GRN) featuring epigenetic regulators. EpiNet was enabled by (i) curated knowledge of epigenetic regulators involved in DNA methylation, histone modification, chromatin remodeling, and siRNA pathways; and (ii) a machine-learning network inference approach powered by a wealth of public transcriptome datasets. We applied GENIE3, a machine-learning network inference approach, to mine public Arabidopsis transcriptomes and construct tissue-specific GRNs with both epigenetic regulators and transcription factors as predictors. The resultant GRNs, named EpiNet, can now be intersected with individual transcriptomic studies on biological processes of interest to identify the most influential epigenetic regulators, as well as predicted gene targets of the epigenetic regulators. We demonstrate the validity of this approach using case studies of shoot and root apical meristem development.

4.
Hortic Res ; 7(1): 82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528694

RESUMO

Lithospermum erythrorhizon (red gromwell; zicao) is a medicinal and economically valuable plant belonging to the Boraginaceae family. Roots from L. erythrorhizon have been used for centuries based on the antiviral and wound-healing properties produced from the bioactive compound shikonin and its derivatives. More recently, shikonin, its enantiomer alkannin, and several other shikonin/alkannin derivatives have collectively emerged as valuable natural colorants and as novel drug scaffolds. Despite several transcriptomes and proteomes having been generated from L. erythrorhizon, a reference genome is still unavailable. This has limited investigations into elucidating the shikonin/alkannin pathway and understanding its evolutionary and ecological significance. In this study, we obtained a de novo genome assembly for L. erythrorhizon using a combination of Oxford Nanopore long-read and Illumina short-read sequencing technologies. The resulting genome is ∼367.41 Mb long, with a contig N50 size of 314.31 kb and 27,720 predicted protein-coding genes. Using the L. erythrorhizon genome, we identified several additional p-hydroxybenzoate:geranyltransferase (PGT) homologs and provide insight into their evolutionary history. Phylogenetic analysis of prenyltransferases suggests that PGTs originated in a common ancestor of modern shikonin/alkannin-producing Boraginaceous species, likely from a retrotransposition-derived duplication event of an ancestral prenyltransferase gene. Furthermore, knocking down expression of LePGT1 in L. erythrorhizon hairy root lines revealed that LePGT1 is predominantly responsible for shikonin production early in culture establishment. Taken together, the reference genome reported in this study and the provided analysis on the evolutionary origin of shikonin/alkannin biosynthesis will guide elucidation of the remainder of the pathway.

5.
Plant Physiol ; 182(1): 215-227, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31641075

RESUMO

Chromatin modification has gained increased attention for its role in the regulation of plant responses to environmental changes, but the specific mechanisms and molecular players remain elusive. Here, we show that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) mediates genome-wide changes in H3K36 methylation at specific genomic loci functionally relevant to nitrate treatments. Moreover, we show that the specific H3K36 methyltransferase encoded by SDG8 is required for canonical RNA processing, and that RNA isoform switching is more prominent in the sdg8-5 deletion mutant than in the wild type. To demonstrate that SDG8-mediated regulation of RNA isoform expression is functionally relevant, we examined a putative regulatory gene, CONSTANS, CO-like, and TOC1 101 (CCT101), whose nitrogen-responsive isoform-specific RNA expression is mediated by SDG8. We show by functional expression in shoot cells that the different RNA isoforms of CCT101 encode distinct regulatory proteins with different effects on genome-wide transcription. We conclude that SDG8 is involved in plant responses to environmental nitrogen supply, affecting multiple gene regulatory processes including genome-wide histone modification, transcriptional regulation, and RNA processing, and thereby mediating developmental and metabolic processes related to nitrogen use.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Nitratos/farmacologia , RNA de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Histona-Lisina N-Metiltransferase/genética , Metilação/efeitos dos fármacos , RNA de Plantas/genética
6.
Hortic Res ; 5: 67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30393541

RESUMO

Several members of the Juglandaceae family produce juglone, a specialized 1,4-naphthoquinone (1,4-NQ) natural product that is responsible for the notorious allelopathic effects of black walnut (Juglans nigra). Despite its documented ecological roles and potential for being developed as a novel natural product-based herbicide, none of the genes involved in synthesizing juglone have been identified. Based on classical labeling studies, we hypothesized that biosynthesis of juglone's naphthalenoid moiety is shared with biochemical steps of the phylloquinone pathway. Here, using comparative transcriptomics in combination with targeted metabolic profiling of 1,4-NQs in various black walnut organs, we provide evidence that phylloquinone pathway genes involved in 1,4-dihydroxynaphthoic acid (DHNA) formation are expressed in roots for synthesis of a compound other than phylloquinone. Feeding experiments using axenic black walnut root cultures revealed that stable isotopically labeled l-glutamate incorporates into juglone resulting in the same mass shift as that expected for labeling of the quinone ring in phylloquinone. Taken together, these results indicate that in planta, an intermediate from the phylloquinone pathway provides the naphthalenoid moiety of juglone. Moreover, this work shows that juglone can be de novo synthesized in roots without the contribution of immediate precursors translocated from aerial tissues. The present study illuminates all genes involved in synthesizing the juglone naphthoquinone ring and provides RNA-sequencing datasets that can be used with functional screening studies to elucidate the remaining juglone pathway genes. Translation of the generated knowledge is expected to inform future metabolic engineering strategies for harnessing juglone as a novel natural product-based herbicide.

7.
Plant Methods ; 14: 51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977324

RESUMO

BACKGROUND: Metabolic fluxes represent the functional phenotypes of biochemical pathways and are essential to reveal the distribution of precursors among metabolic networks. Although analysis of metabolic fluxes, facilitated by stable isotope labeling and mass spectrometry detection, has been applied in the studies of plant metabolism, we lack experimental measurements for carbon flux towards lignin, one of the most abundant polymers in nature. RESULTS: We developed a feeding strategy of excised Arabidopsis stems with 13C labeled phenylalanine (Phe) for the analysis of lignin biosynthetic flux. We optimized the feeding methods and found the stems continued to grow and lignify. Consistent with lignification profiles along the stems, higher levels of phenylpropanoids and activities of lignin biosynthetic enzymes were detected in the base of the stem. In the feeding experiments, 13C labeled Phe was quickly accumulated and used for the synthesis of phenylpropanoid intermediates and lignin. The intermediates displayed two different patterns of labeling kinetics during the feeding period. Analysis of lignin showed rapid incorporation of label into all three subunits in the polymers. CONCLUSIONS: Our feeding results demonstrate the effectiveness of the stem feeding system and suggest a potential application for the investigations of other aspects in plant metabolism. The supply of exogenous Phe leading to a higher lignin deposition rate indicates the availability of Phe is a determining factor for lignification rates.

8.
Plant J ; 93(5): 905-916, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315918

RESUMO

Peroxisomal ß-oxidative degradation of compounds is a common metabolic process in eukaryotes. Reported benzoyl-coenzyme A (BA-CoA) thioesterase activity in peroxisomes from petunia flowers suggests that, like mammals and fungi, plants contain auxiliary enzymes mediating ß-oxidation. Here we report the identification of Petunia hybrida thioesterase 1 (PhTE1), which catalyzes the hydrolysis of aromatic acyl-CoAs to their corresponding acids in peroxisomes. PhTE1 expression is spatially, developmentally and temporally regulated and exhibits a similar pattern to known benzenoid metabolic genes. PhTE1 activity is inhibited by free coenzyme A (CoA), indicating that PhTE1 is regulated by the peroxisomal CoA pool. PhTE1 downregulation in petunia flowers led to accumulation of BA-CoA with increased production of benzylbenzoate and phenylethylbenzoate, two compounds which rely on the presence of BA-CoA precursor in the cytoplasm, suggesting that acyl-CoAs can be exported from peroxisomes. Furthermore, PhTE1 downregulation resulted in increased pools of cytoplasmic phenylpropanoid pathway intermediates, volatile phenylpropenes, lignin and anthocyanins. These results indicate that PhTE1 influences (i) intraperoxisomal acyl-CoA/CoA levels needed to carry out ß-oxidation, (ii) efflux of ß-oxidative products, acyl-CoAs and free acids, from peroxisomes, and (iii) flux distribution within the benzenoid/phenylpropanoid metabolic network. Thus, this demonstrates that plant thioesterases play multiple auxiliary roles in peroxisomal ß-oxidative metabolism.


Assuntos
Ácido Benzoico/metabolismo , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Tioléster Hidrolases/metabolismo , Coenzima A/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Hidrólise , Oxirredução , Peroxissomos/genética , Peroxissomos/metabolismo , Petunia/genética , Petunia/crescimento & desenvolvimento , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Especificidade por Substrato , Tioléster Hidrolases/genética
9.
Nat Commun ; 6: 8142, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26356302

RESUMO

In addition to proteins, L-phenylalanine is a versatile precursor for thousands of plant metabolites. Production of phenylalanine-derived compounds is a complex multi-compartmental process using phenylalanine synthesized predominantly in plastids as precursor. The transporter(s) exporting phenylalanine from plastids, however, remains unknown. Here, a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter (PhpCAT) functioning in plastidial phenylalanine export is identified based on homology to an Escherichia coli phenylalanine transporter and co-expression with phenylalanine metabolic genes. Radiolabel transport assays show that PhpCAT exports all three aromatic amino acids. PhpCAT downregulation and overexpression result in decreased and increased levels, respectively, of phenylalanine-derived volatiles, as well as phenylalanine, tyrosine and their biosynthetic intermediates. Metabolic flux analysis reveals that flux through the plastidial phenylalanine biosynthetic pathway is reduced in PhpCAT RNAi lines, suggesting that the rate of phenylalanine export from plastids contributes to regulating flux through the aromatic amino-acid network.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Vias Biossintéticas , Escherichia coli , Análise do Fluxo Metabólico , Petunia , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Tirosina/metabolismo , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA