Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Sci Rep ; 14(1): 1665, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238423

RESUMO

The first step in any dietary monitoring system is the automatic detection of eating episodes. To detect eating episodes, either sensor data or images can be used, and either method can result in false-positive detection. This study aims to reduce the number of false positives in the detection of eating episodes by a wearable sensor, Automatic Ingestion Monitor v2 (AIM-2). Thirty participants wore the AIM-2 for two days each (pseudo-free-living and free-living). The eating episodes were detected by three methods: (1) recognition of solid foods and beverages in images captured by AIM-2; (2) recognition of chewing from the AIM-2 accelerometer sensor; and (3) hierarchical classification to combine confidence scores from image and accelerometer classifiers. The integration of image- and sensor-based methods achieved 94.59% sensitivity, 70.47% precision, and 80.77% F1-score in the free-living environment, which is significantly better than either of the original methods (8% higher sensitivity). The proposed method successfully reduces the number of false positives in the detection of eating episodes.


Assuntos
Dieta , Mastigação , Humanos , Monitorização Fisiológica , Reconhecimento Psicológico , Processos Mentais
2.
IEEE Trans Cybern ; 54(2): 679-692, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37028043

RESUMO

Camera-based passive dietary intake monitoring is able to continuously capture the eating episodes of a subject, recording rich visual information, such as the type and volume of food being consumed, as well as the eating behaviors of the subject. However, there currently is no method that is able to incorporate these visual clues and provide a comprehensive context of dietary intake from passive recording (e.g., is the subject sharing food with others, what food the subject is eating, and how much food is left in the bowl). On the other hand, privacy is a major concern while egocentric wearable cameras are used for capturing. In this article, we propose a privacy-preserved secure solution (i.e., egocentric image captioning) for dietary assessment with passive monitoring, which unifies food recognition, volume estimation, and scene understanding. By converting images into rich text descriptions, nutritionists can assess individual dietary intake based on the captions instead of the original images, reducing the risk of privacy leakage from images. To this end, an egocentric dietary image captioning dataset has been built, which consists of in-the-wild images captured by head-worn and chest-worn cameras in field studies in Ghana. A novel transformer-based architecture is designed to caption egocentric dietary images. Comprehensive experiments have been conducted to evaluate the effectiveness and to justify the design of the proposed architecture for egocentric dietary image captioning. To the best of our knowledge, this is the first work that applies image captioning for dietary intake assessment in real-life settings.


Assuntos
Ingestão de Alimentos , Privacidade , Dieta , Avaliação Nutricional , Comportamento Alimentar
3.
Nutrients ; 15(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764857

RESUMO

BACKGROUND: Accurate estimation of dietary intake is challenging. However, whilst some progress has been made in high-income countries, low- and middle-income countries (LMICs) remain behind, contributing to critical nutritional data gaps. This study aimed to validate an objective, passive image-based dietary intake assessment method against weighed food records in London, UK, for onward deployment to LMICs. METHODS: Wearable camera devices were used to capture food intake on eating occasions in 18 adults and 17 children of Ghanaian and Kenyan origin living in London. Participants were provided pre-weighed meals of Ghanaian and Kenyan cuisine and camera devices to automatically capture images of the eating occasions. Food images were assessed for portion size, energy, nutrient intake, and the relative validity of the method compared to the weighed food records. RESULTS: The Pearson and Intraclass correlation coefficients of estimates of intakes of food, energy, and 19 nutrients ranged from 0.60 to 0.95 and 0.67 to 0.90, respectively. Bland-Altman analysis showed good agreement between the image-based method and the weighed food record. Under-estimation of dietary intake by the image-based method ranged from 4 to 23%. CONCLUSIONS: Passive food image capture and analysis provides an objective assessment of dietary intake comparable to weighed food records.


Assuntos
Ingestão de Alimentos , Alimentos , Humanos , Adulto , Criança , Londres , Gana , Quênia
4.
Front Nutr ; 10: 1191962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575335

RESUMO

Introduction: Dietary assessment is important for understanding nutritional status. Traditional methods of monitoring food intake through self-report such as diet diaries, 24-hour dietary recall, and food frequency questionnaires may be subject to errors and can be time-consuming for the user. Methods: This paper presents a semi-automatic dietary assessment tool we developed - a desktop application called Image to Nutrients (I2N) - to process sensor-detected eating events and images captured during these eating events by a wearable sensor. I2N has the capacity to offer multiple food and nutrient databases (e.g., USDA-SR, FNDDS, USDA Global Branded Food Products Database) for annotating eating episodes and food items. I2N estimates energy intake, nutritional content, and the amount consumed. The components of I2N are three-fold: 1) sensor-guided image review, 2) annotation of food images for nutritional analysis, and 3) access to multiple food databases. Two studies were used to evaluate the feasibility and usefulness of I2N: 1) a US-based study with 30 participants and a total of 60 days of data and 2) a Ghana-based study with 41 participants and a total of 41 days of data). Results: In both studies, a total of 314 eating episodes were annotated using at least three food databases. Using I2N's sensor-guided image review, the number of images that needed to be reviewed was reduced by 93% and 85% for the two studies, respectively, compared to reviewing all the images. Discussion: I2N is a unique tool that allows for simultaneous viewing of food images, sensor-guided image review, and access to multiple databases in one tool, making nutritional analysis of food images efficient. The tool is flexible, allowing for nutritional analysis of images if sensor signals aren't available.

5.
Front Nutr ; 10: 1119542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252243

RESUMO

Introduction: The aim of this feasibility and proof-of-concept study was to examine the use of a novel wearable device for automatic food intake detection to capture the full range of free-living eating environments of adults with overweight and obesity. In this paper, we document eating environments of individuals that have not been thoroughly described previously in nutrition software as current practices rely on participant self-report and methods with limited eating environment options. Methods: Data from 25 participants and 116 total days (7 men, 18 women, Mage = 44 ± 12 years, BMI 34.3 ± 5.2 kg/mm2), who wore the passive capture device for at least 7 consecutive days (≥12h waking hours/d) were analyzed. Data were analyzed at the participant level and stratified amongst meal type into breakfast, lunch, dinner, and snack categories. Out of 116 days, 68.1% included breakfast, 71.5% included lunch, 82.8% included dinner, and 86.2% included at least one snack. Results: The most prevalent eating environment among all eating occasions was at home and with one or more screens in use (breakfast: 48.1%, lunch: 42.2%, dinner: 50%, and snacks: 55%), eating alone (breakfast: 75.9%, lunch: 89.2%, dinner: 74.3%, snacks: 74.3%), in the dining room (breakfast: 36.7%, lunch: 30.1%, dinner: 45.8%) or living room (snacks: 28.0%), and in multiple locations (breakfast: 44.3%, lunch: 28.8%, dinner: 44.8%, snacks: 41.3%). Discussion: Results suggest a passive capture device can provide accurate detection of food intake in multiple eating environments. To our knowledge, this is the first study to classify eating occasions in multiple eating environments and may be a useful tool for future behavioral research studies to accurately codify eating environments.

6.
Front Nutr ; 9: 1032825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238452
7.
Int J Obes (Lond) ; 46(11): 2050-2057, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192533

RESUMO

OBJECTIVES: Dietary assessment methods not relying on self-report are needed. The Automatic Ingestion Monitor 2 (AIM-2) combines a wearable camera that captures food images with sensors that detect food intake. We compared energy intake (EI) estimates of meals derived from AIM-2 chewing sensor signals, AIM-2 images, and an internet-based diet diary, with researcher conducted weighed food records (WFR) as the gold standard. SUBJECTS/METHODS: Thirty adults wore the AIM-2 for meals self-selected from a university food court on one day in mixed laboratory and free-living conditions. Daily EI was determined from a sensor regression model, manual image analysis, and a diet diary and compared with that from WFR. A posteriori analysis identified sources of error for image analysis and WFR differences. RESULTS: Sensor-derived EI from regression modeling (R2 = 0.331) showed the closest agreement with EI from WFR, followed by diet diary estimates. EI from image analysis differed significantly from that by WFR. Bland-Altman analysis showed wide limits of agreement for all three test methods with WFR, with the sensor method overestimating at lower and underestimating at higher EI. Nutritionist error in portion size estimation and irreconcilable differences in portion size between food and nutrient databases used for WFR and image analyses were the greatest contributors to image analysis and WFR differences (44.4% and 44.8% of WFR EI, respectively). CONCLUSIONS: Estimation of daily EI from meals using sensor-derived features offers a promising alternative to overcome limitations of self-report. Image analysis may benefit from computerized analytical procedures to reduce identified sources of error.


Assuntos
Ingestão de Energia , Dispositivos Eletrônicos Vestíveis , Humanos , Adulto , Registros de Dieta , Refeições , Dieta
8.
Front Nutr ; 9: 941001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958246

RESUMO

Background: A fast rate of eating is associated with a higher risk for obesity but existing studies are limited by reliance on self-report and the consistency of eating rate has not been examined across all meals in a day. The goal of the current analysis was to examine associations between meal duration, rate of eating, and body mass index (BMI) and to assess the variance of meal duration and eating rate across different meals during the day. Methods: Using an observational cross-sectional study design, non-smoking participants aged 18-45 years (N = 29) consumed all meals (breakfast, lunch, and dinner) on a single day in a pseudo free-living environment. Participants were allowed to choose any food and beverages from a University food court and consume their desired amount with no time restrictions. Weighed food records and a log of meal start and end times, to calculate duration, were obtained by a trained research assistant. Spearman's correlations and multiple linear regressions examined associations between BMI and meal duration and rate of eating. Results: Participants were 65% male and 48% white. A shorter meal duration was associated with a higher BMI at breakfast but not lunch or dinner, after adjusting for age and sex (p = 0.03). Faster rate of eating was associated with higher BMI across all meals (p = 0.04) and higher energy intake for all meals (p < 0.001). Intra-individual rates of eating were not significantly different across breakfast, lunch, and dinner (p = 0.96). Conclusion: Shorter beakfast and a faster rate of eating across all meals were associated with higher BMI in a pseudo free-living environment. An individual's rate of eating is constant over all meals in a day. These data support weight reduction interventions focusing on the rate of eating at all meals throughout the day and provide evidence for specifically directing attention to breakfast eating behaviors.

9.
Front Nutr ; 9: 877775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811954

RESUMO

Objective: To describe best practices for manual nutritional analyses of data from passive capture wearable devices in free-living conditions. Method: 18 participants (10 female) with a mean age of 45 ± 10 years and mean BMI of 34.2 ± 4.6 kg/m2 consumed usual diet for 3 days in a free-living environment while wearing an automated passive capture device. This wearable device facilitates capture of images without manual input from the user. Data from the first nine participants were used by two trained nutritionists to identify sources contributing to inter-nutritionist variance in nutritional analyses. The nutritionists implemented best practices to mitigate these sources of variance in the next nine participants. The three best practices to reduce variance in analysis of energy intake (EI) estimation were: (1) a priori standardized food selection, (2) standardized nutrient database selection, and (3) increased number of images captured around eating episodes. Results: Inter-rater repeatability for EI, using intraclass correlation coefficient (ICC), improved by 0.39 from pre-best practices to post-best practices (0.14 vs 0.85, 95% CI, respectively), Bland-Altman analysis indicated strongly improved agreement between nutritionists for limits of agreement (LOA) post-best practices. Conclusion: Significant improvement of ICC and LOA for estimation of EI following implementation of best practices demonstrates that these practices improve the reproducibility of dietary analysis from passive capture device images in free-living environments.

10.
Exp Gerontol ; 165: 111840, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643360

RESUMO

OBJECTIVES: The aim was to determine the nutritional adequacy of calorie restricted (CR) diets during CR interventions up to 12 months. METHODS: The Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE™) phase 1 trial consisted of 3 single-site studies to test the feasibility and effectiveness of CR in adults without obesity. After baseline assessments, participants who were randomized to a CR intervention received education and training from registered dietitians on how to follow a healthful CR diet. Food diaries were completed at baseline and during the CR interventions (~6, 9, and 12 months) when participants were self-selecting CR diets. Diaries were analyzed for energy, macronutrients, fiber, 11 vitamins, and 9 minerals. Nutritional adequacy was defined by sex- and age-specific Estimated Average Requirement (EAR) or Adequate Intake (AI) criteria for each nutrient. Diet quality was evaluated using the PANDiet diet quality index. RESULTS: Eighty-eight CR participants (67% women, age 40 ± 9 y, BMI 27.7 ± 1.5 kg/m2) were included in the analysis. Dietary intake of fiber and most vitamins and minerals increased during CR. More than 90% of participants achieved 100% of EAR or AI during CR for 2 of 4 macronutrients (carbohydrate and protein), 6 of 11 vitamins (A, B1, B2, B3, B6, B12), and 6 of 9 minerals assessed (copper, iron, phosphorus, selenium, sodium, zinc). Nutrients for which <90% of participants achieved adequacy included fiber, omega-3 fatty acids, vitamins B5, B9, C, E, and K, and the minerals calcium, magnesium, and potassium. The PANDiet diet quality index improved from 72.9 ± 6.0% at baseline to 75.7 ± 5.2% during CR (p < 0.0001). CONCLUSION: Long-term, calorie-restricted diets were nutritionally equal or superior to baseline ad libitum diets among adults without obesity. Our results support modest calorie restriction as a safe strategy to promote healthy aging without compromising nutritional adequacy or diet quality.


Assuntos
Restrição Calórica , Ingestão de Energia , Dieta , Fibras na Dieta , Feminino , Humanos , Masculino , Minerais , Valor Nutritivo , Obesidade , Vitaminas
11.
Public Health Nutr ; : 1-11, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35616087

RESUMO

OBJECTIVE: Passive, wearable sensors can be used to obtain objective information in infant feeding, but their use has not been tested. Our objective was to compare assessment of infant feeding (frequency, duration and cues) by self-report and that of the Automatic Ingestion Monitor-2 (AIM-2). DESIGN: A cross-sectional pilot study was conducted in Ghana. Mothers wore the AIM-2 on eyeglasses for 1 d during waking hours to assess infant feeding using images automatically captured by the device every 15 s. Feasibility was assessed using compliance with wearing the device. Infant feeding practices collected by the AIM-2 images were annotated by a trained evaluator and compared with maternal self-report via interviewer-administered questionnaire. SETTING: Rural and urban communities in Ghana. PARTICIPANTS: Participants were thirty eight (eighteen rural and twenty urban) breast-feeding mothers of infants (child age ≤7 months). RESULTS: Twenty-five mothers reported exclusive breast-feeding, which was common among those < 30 years of age (n 15, 60 %) and those residing in urban communities (n 14, 70 %). Compliance with wearing the AIM-2 was high (83 % of wake-time), suggesting low user burden. Maternal report differed from the AIM-2 data, such that mothers reported higher mean breast-feeding frequency (eleven v. eight times, P = 0·041) and duration (18·5 v. 10 min, P = 0·007) during waking hours. CONCLUSION: The AIM-2 was a feasible tool for the assessment of infant feeding among mothers in Ghana as a passive, objective method and identified overestimation of self-reported breast-feeding frequency and duration. Future studies using the AIM-2 are warranted to determine validity on a larger scale.

12.
Sensors (Basel) ; 22(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214399

RESUMO

Knowing the amounts of energy and nutrients in an individual's diet is important for maintaining health and preventing chronic diseases. As electronic and AI technologies advance rapidly, dietary assessment can now be performed using food images obtained from a smartphone or a wearable device. One of the challenges in this approach is to computationally measure the volume of food in a bowl from an image. This problem has not been studied systematically despite the bowl being the most utilized food container in many parts of the world, especially in Asia and Africa. In this paper, we present a new method to measure the size and shape of a bowl by adhering a paper ruler centrally across the bottom and sides of the bowl and then taking an image. When observed from the image, the distortions in the width of the paper ruler and the spacings between ruler markers completely encode the size and shape of the bowl. A computational algorithm is developed to reconstruct the three-dimensional bowl interior using the observed distortions. Our experiments using nine bowls, colored liquids, and amorphous foods demonstrate high accuracy of our method for food volume estimation involving round bowls as containers. A total of 228 images of amorphous foods were also used in a comparative experiment between our algorithm and an independent human estimator. The results showed that our algorithm overperformed the human estimator who utilized different types of reference information and two estimation methods, including direct volume estimation and indirect estimation through the fullness of the bowl.


Assuntos
Dieta , Ingestão de Energia , Algoritmos , Alimentos , Humanos , Smartphone
13.
Front Artif Intell ; 4: 644712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33870184

RESUMO

Malnutrition, including both undernutrition and obesity, is a significant problem in low- and middle-income countries (LMICs). In order to study malnutrition and develop effective intervention strategies, it is crucial to evaluate nutritional status in LMICs at the individual, household, and community levels. In a multinational research project supported by the Bill & Melinda Gates Foundation, we have been using a wearable technology to conduct objective dietary assessment in sub-Saharan Africa. Our assessment includes multiple diet-related activities in urban and rural families, including food sources (e.g., shopping, harvesting, and gathering), preservation/storage, preparation, cooking, and consumption (e.g., portion size and nutrition analysis). Our wearable device ("eButton" worn on the chest) acquires real-life images automatically during wake hours at preset time intervals. The recorded images, in amounts of tens of thousands per day, are post-processed to obtain the information of interest. Although we expect future Artificial Intelligence (AI) technology to extract the information automatically, at present we utilize AI to separate the acquired images into two binary classes: images with (Class 1) and without (Class 0) edible items. As a result, researchers need only to study Class-1 images, reducing their workload significantly. In this paper, we present a composite machine learning method to perform this classification, meeting the specific challenges of high complexity and diversity in the real-world LMIC data. Our method consists of a deep neural network (DNN) and a shallow learning network (SLN) connected by a novel probabilistic network interface layer. After presenting the details of our method, an image dataset acquired from Ghana is utilized to train and evaluate the machine learning system. Our comparative experiment indicates that the new composite method performs better than the conventional deep learning method assessed by integrated measures of sensitivity, specificity, and burden index, as indicated by the Receiver Operating Characteristic (ROC) curve.

14.
West J Nurs Res ; 43(6): 563-571, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32957859

RESUMO

The purpose of this pilot study was to test a church-based, culturally sensitive, six-week intervention called GET FIT DON'T QUIT. The intervention aimed to increase knowledge and change beliefs about physical activity, and to improve social facilitation to increase self-regulation, in order to promote physical activity in African-American women. A two-group pretest/posttest, quasi-experimental design was conducted in a convenience sample (N = 37) of African-American women. Participants were randomly assigned to the intervention or control group by church affiliation. The six-week intervention consisted of teaching and roundtable discussions, and email reminders to be physically active. There were significant differences (p < .05) in the level of self-efficacy, self-regulation, and friend social support. There were no significant differences in knowledge of physical activity guidelines, beliefs, and family social support. These pilot study results suggested that multiple factors are associated with physical activity engagement in African-American women.


Assuntos
Negro ou Afro-Americano , Exercício Físico , Feminino , Promoção da Saúde/métodos , Humanos , Projetos Piloto , Autoeficácia
15.
Front Nutr ; 7: 99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760735

RESUMO

Objective: No data currently exist on the reproducibility of photographic food records compared to diet diaries, two commonly used methods to measure dietary intake. Our aim was to examine the reproducibility of diet diaries, photographic food records, and a novel electronic sensor, consisting of counts of chews and swallows using wearable sensors and video analysis, for estimating energy intake. Method: This was a retrospective analysis of data from a previous study, in which 30 participants (15 female), aged 29 ± 12 y and having a BMI of 27.9 ± 5.5, consumed three identical meals on different days. Four different methods were used to estimate total mass and energy intake on each day: (1) weighed food record; (2) photographic food record; (3) diet diary; and (4) novel mathematical model based on counts of chews and swallows (CCS models) obtained via the use of electronic sensors and video monitoring system. The study staff conducted weighed food records for all meals, took pre- and post-meal photographs, and ensured that diet diaries were completed by participants at the end of each meal. All methods were compared against the weighed food record, which was used as the reference method. Results: Reproducibility was significantly different between the diet diary and photographic food record for total energy intake (p = 0.004). The photographic record had greater reproducibility vs. the diet diary for all parameters measured. For total energy intake, the novel sensor method exhibited good reproducibility (repeatability coefficient (RC) of 59.9 (45.9, 70.4), which was better than that for the diet diary [RC = 79.6 (55.5, 103.3)] but not as repeatable as the photographic method [RC = 43.4 (32.1, 53.9)]. Conclusion: Photographic food records offer superior precision to the diet diary and, therefore, would be valuable for longitudinal studies with repeated measures of dietary intake. A novel electronic sensor also shows promise for the collection of longitudinal dietary intake data.

16.
Curr Dev Nutr ; 4(2): nzaa020, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099953

RESUMO

Malnutrition is a major concern in low- and middle-income countries (LMIC), but the full extent of nutritional deficiencies remains unknown largely due to lack of accurate assessment methods. This study seeks to develop and validate an objective, passive method of estimating food and nutrient intake in households in Ghana and Uganda. Household members (including under-5s and adolescents) are assigned a wearable camera device to capture images of their food intake during waking hours. Using custom software, images captured are then used to estimate an individual's food and nutrient (i.e., protein, fat, carbohydrate, energy, and micronutrients) intake. Passive food image capture and assessment provides an objective measure of food and nutrient intake in real time, minimizing some of the limitations associated with self-reported dietary intake methods. Its use in LMIC could potentially increase the understanding of a population's nutritional status, and the contribution of household food intake to the malnutrition burden. This project is registered at clinicaltrials.gov (NCT03723460).

17.
J Acad Nutr Diet ; 119(6): 923-933, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30826304

RESUMO

BACKGROUND: US national survey data shows fast food accounted for 11% of daily caloric intake in 2007-2010. OBJECTIVE: To provide a detailed assessment of changes over time in fast-food menu offerings over 30 years, including food variety (number of items as a proxy), portion size, energy, energy density, and selected micronutrients (sodium, calcium, and iron as percent daily value [%DV]), and to compare changes over time across menu categories (entrées, sides, and desserts). DESIGN: Fast-food entrées, sides, and dessert menu item data for 1986, 1991, and 2016 were compiled from primary and secondary sources for 10 popular fast-food restaurants. STATISTICAL ANALYSIS: Descriptive statistics were calculated. Linear mixed-effects analysis of variance was performed to examine changes over time by menu category. RESULTS: From 1986 to 2016, the number of entrées, sides, and desserts for all restaurants combined increased by 226%. Portion sizes of entrées (13 g/decade) and desserts (24 g/decade), but not sides, increased significantly, and the energy (kilocalories) and sodium of items in all three menu categories increased significantly. Desserts showed the largest increase in energy (62 kcal/decade), and entrées had the largest increase in sodium (4.6% DV/decade). Calcium increased significantly in entrées (1.2%DV/decade) and to a greater extent in desserts (3.9% DV/decade), but not sides, and iron increased significantly only in desserts (1.4% DV/decade). CONCLUSIONS: These results demonstrate broadly detrimental changes in fast-food restaurant offerings over a 30-year span including increasing variety, portion size, energy, and sodium content. Research is needed to identify effective strategies that may help consumers reduce energy intake from fast-food restaurants as part of measures to improve dietary-related health issues in the United States.


Assuntos
Fast Foods/estatística & dados numéricos , Alimentos/estatística & dados numéricos , Micronutrientes/análise , Tamanho da Porção/tendências , Restaurantes/estatística & dados numéricos , Inquéritos sobre Dietas , Humanos , Valor Nutritivo , Estados Unidos
18.
Nutrients ; 11(3)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871173

RESUMO

Video observations have been widely used for providing ground truth for wearable systems for monitoring food intake in controlled laboratory conditions; however, video observation requires participants be confined to a defined space. The purpose of this analysis was to test an alternative approach for establishing activity types and food intake bouts in a relatively unconstrained environment. The accuracy of a wearable system for assessing food intake was compared with that from video observation, and inter-rater reliability of annotation was also evaluated. Forty participants were enrolled. Multiple participants were simultaneously monitored in a 4-bedroom apartment using six cameras for three days each. Participants could leave the apartment overnight and for short periods of time during the day, during which time monitoring did not take place. A wearable system (Automatic Ingestion Monitor, AIM) was used to detect and monitor participants' food intake at a resolution of 30 s using a neural network classifier. Two different food intake detection models were tested, one trained on the data from an earlier study and the other on current study data using leave-one-out cross validation. Three trained human raters annotated the videos for major activities of daily living including eating, drinking, resting, walking, and talking. They further annotated individual bites and chewing bouts for each food intake bout. Results for inter-rater reliability showed that, for activity annotation, the raters achieved an average (±standard deviation (STD)) kappa value of 0.74 (±0.02) and for food intake annotation the average kappa (Light's kappa) of 0.82 (±0.04). Validity results showed that AIM food intake detection matched human video-annotated food intake with a kappa of 0.77 (±0.10) and 0.78 (±0.12) for activity annotation and for food intake bout annotation, respectively. Results of one-way ANOVA suggest that there are no statistically significant differences among the average eating duration estimated from raters' annotations and AIM predictions (p-value = 0.19). These results suggest that the AIM provides accuracy comparable to video observation and may be used to reliably detect food intake in multi-day observational studies.


Assuntos
Ingestão de Alimentos , Mastigação/fisiologia , Monitorização Fisiológica , Gravação em Vídeo , Atividades Cotidianas , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes
19.
Sci Rep ; 9(1): 45, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631094

RESUMO

Accurate and objective assessment of energy intake remains an ongoing problem. We used features derived from annotated video observation and a chewing sensor to predict mass and energy intake during a meal without participant self-report. 30 participants each consumed 4 different meals in a laboratory setting and wore a chewing sensor while being videotaped. Subject-independent models were derived from bite, chew, and swallow features obtained from either video observation or information extracted from the chewing sensor. With multiple regression analysis, a forward selection procedure was used to choose the best model. The best estimates of meal mass and energy intake had (mean ± standard deviation) absolute percentage errors of 25.2% ± 18.9% and 30.1% ± 33.8%, respectively, and mean ± standard deviation estimation errors of -17.7 ± 226.9 g and -6.1 ± 273.8 kcal using features derived from both video observations and sensor data. Both video annotation and sensor-derived features may be utilized to objectively quantify energy intake.


Assuntos
Ingestão de Energia , Comportamento Alimentar , Mastigação , Modelos Estatísticos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravação em Vídeo , Adulto Jovem
20.
IEEE Access ; 7: 49653-49668, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32489752

RESUMO

Accurate measurement of energy intake (EI) is important for estimation of energy balance, and, correspondingly, body weight dynamics. Traditional measurements of EI rely on self-report, which may be inaccurate and underestimate EI. The imperfections in traditional methodologies such as 24-hour dietary recall, dietary record, and food frequency questionnaire stipulate development of technology-driven methods that rely on wearable sensors and imaging devices to achieve an objective and accurate assessment of EI. The aim of this research was to systematically review and examine peer-reviewed papers that cover the estimation of EI in humans, with the focus on emerging technology-driven methodologies. Five major electronic databases were searched for articles published from January 2005 to August 2017: Pubmed, Science Direct, IEEE Xplore, ACM library, and Google Scholar. Twenty-six eligible studies were retrieved that met the inclusion criteria. The review identified that while the current methods of estimating EI show promise, accurate estimation of EI in free-living individuals presents many challenges and opportunities. The most accurate result identified for EI (kcal) estimation had an average accuracy of 94%. However, collectively, the results were obtained from a limited number of food items (i.e., 19), small sample sizes (i.e., 45 meal images), and primarily controlled conditions. Therefore, new methods that accurately estimate EI over long time periods in free-living conditions are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA