Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Microbiome ; 12(1): 89, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745230

RESUMO

BACKGROUND: Non-toxic approaches to enhance radiotherapy outcomes are beneficial, particularly in ageing populations. Based on preclinical findings showing that high-fibre diets sensitised bladder tumours to irradiation by modifying the gut microbiota, along with clinical evidence of prebiotics enhancing anti-cancer immunity, we hypothesised that dietary fibre and its gut microbiota modification can radiosensitise tumours via secretion of metabolites and/or immunomodulation. We investigated the efficacy of high-fibre diets combined with irradiation in immunoproficient C57BL/6 mice bearing bladder cancer flank allografts. RESULT: Psyllium plus inulin significantly decreased tumour size and delayed tumour growth following irradiation compared to 0.2% cellulose and raised intratumoural CD8+ cells. Post-irradiation, tumour control positively correlated with Lachnospiraceae family abundance. Psyllium plus resistant starch radiosensitised the tumours, positively correlating with Bacteroides genus abundance and increased caecal isoferulic acid levels, associated with a favourable response in terms of tumour control. Psyllium plus inulin mitigated the acute radiation injury caused by 14 Gy. Psyllium plus inulin increased caecal acetate, butyrate and propionate levels, and psyllium alone and psyllium plus resistant starch increased acetate levels. Human gut microbiota profiles at the phylum level were generally more like mouse 0.2% cellulose profiles than high fibre profiles. CONCLUSION: These supplements may be useful in combination with radiotherapy in patients with pelvic malignancy. Video Abstract.


Assuntos
Fibras na Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Inulina , Camundongos Endogâmicos C57BL , Psyllium , Neoplasias da Bexiga Urinária , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/administração & dosagem , Neoplasias da Bexiga Urinária/radioterapia , Neoplasias da Bexiga Urinária/patologia , Humanos , Feminino , Lesões por Radiação/prevenção & controle , Intestinos/microbiologia , Intestinos/efeitos da radiação , Linfócitos T CD8-Positivos
2.
Chem Sci ; 15(7): 2509-2517, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362406

RESUMO

Patients with alcoholism and type 2 diabetes manifest altered metabolism, including elevated aldehyde levels and unusually low asparagine levels. We show that asparagine synthetase B (ASNS), the only human asparagine-forming enzyme, is inhibited by disease-relevant reactive aldehydes, including formaldehyde and acetaldehyde. Cellular studies show non-cytotoxic amounts of reactive aldehydes induce a decrease in asparagine levels. Biochemical analyses reveal inhibition results from reaction of the aldehydes with the catalytically important N-terminal cysteine of ASNS. The combined cellular and biochemical results suggest a possible mechanism underlying the low asparagine levels in alcoholism and diabetes. The results will stimulate research on the biological consequences of the reactions of aldehydes with nucleophilic residues.

3.
Cancer Metab ; 12(1): 5, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350962

RESUMO

BACKGROUND: PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS: From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS: PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS: Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.

4.
Chem Sci ; 14(44): 12498-12505, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020377

RESUMO

Formaldehyde is a pollutant and human metabolite that is toxic at high concentrations. Biological studies on formaldehyde are hindered by its high reactivity and volatility, which make it challenging to deliver quantitatively to cells. Here, we describe the development and validation of a set of N-acyloxymethyl-phthalimides as cell-relevant formaldehyde delivery agents. These esterase-sensitive compounds were similarly or less inhibitory to human cancer cell growth than free formaldehyde but the lead compound increased intracellular formaldehyde concentrations, increased cellular levels of thymidine derivatives (implying increased formaldehyde-mediated carbon metabolism), induced formation of cellular DNA-protein cross-links and induced cell death in pancreatic cancer cells. Overall, our N-acyloxymethyl-phthalimides and control compounds provide an accessible and broadly applicable chemical toolkit for formaldehyde biological research and have potential as cancer therapeutics.

5.
Proc Natl Acad Sci U S A ; 120(40): e2302996120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748053

RESUMO

Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfatos Açúcares , Arabidopsis/genética , Trealose , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases/genética , Proteínas de Arabidopsis/genética
7.
Nat Cardiovasc Res ; 2: 1221-1245, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38500966

RESUMO

Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca2+, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of Pde9a and Mme, genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with ß-alanine buildup. Raising ß-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.

8.
Sci Transl Med ; 14(676): eabm4054, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542696

RESUMO

More than 40% of individuals will develop osteoarthritis (OA) during their lifetime, yet there are currently no licensed disease-modifying treatments for this disabling condition. Common polymorphic variants in ALDH1A2, which encodes the key enzyme for synthesis of all-trans retinoic acid (atRA), are associated with severe hand OA. Here, we sought to elucidate the biological significance of this association. We first confirmed that ALDH1A2 risk variants were associated with hand OA in the U.K. Biobank. Articular cartilage was acquired from 33 individuals with hand OA at the time of routine hand OA surgery. After stratification by genotype, RNA sequencing was performed. A reciprocal relationship between ALDH1A2 mRNA and inflammatory genes was observed. Articular cartilage injury up-regulated similar inflammatory genes by a process that we have previously termed mechanoflammation, which we believe is a primary driver of OA. Cartilage injury was also associated with a concomitant drop in atRA-inducible genes, which were used as a surrogate measure of cellular atRA concentration. Both responses to injury were reversed using talarozole, a retinoic acid metabolism blocking agent (RAMBA). Suppression of mechanoflammation by talarozole was mediated by a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Talarozole was able to suppress mechano-inflammatory genes in articular cartilage in vivo 6 hours after mouse knee joint destabilization and reduced cartilage degradation and osteophyte formation after 26 days. These data show that boosting atRA suppresses mechanoflammation in the articular cartilage in vitro and in vivo and identifies RAMBAs as potential disease-modifying drugs for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Tretinoína/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Articulação do Joelho , Anti-Inflamatórios , Condrócitos/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo
9.
Sci Rep ; 12(1): 21284, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494389

RESUMO

The characterization of archaeological metal corrosion has traditionally been limited to the identification of inorganic compounds usually by X-ray diffraction (XRD), thought to result from the interaction between the metal object and the deposition environment. The discovery of a hoard of Late Roman copper-alloy vessels in Wiltshire, UK presented an unique opportunity to adopt a multi-analytical approach to characterize corrosion combining XRD with Fourier-transform infrared (FTIR) and gas chromatography with quadrupole time-of-flight mass spectrometry using a thermal separation probe (GC-QTOF-MS with TSP). This approach revealed organic compounds potentially historical preserved within crystalline inorganic matrices. It has been known for some time that ceramics can harbour organic residues, which provide crucial evidence about the use of these vessels in the past. Our results confirms that similar residues appear to survive in metal corrosion thus extending the potential for identification of biomaterials used in the past.


Assuntos
Arqueologia , Cerâmica , Cromatografia Gasosa-Espectrometria de Massas/métodos , Corrosão , Arqueologia/métodos , Difração de Raios X , Cerâmica/química , Metais/química
10.
Sci Rep ; 12(1): 14521, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202853

RESUMO

We analysed corrosion from a copper bowl dating from the Roman period (43-410 AD) found in a farm in Kent, UK. Despite its relatively good condition, the interior and exterior surface of the object had areas of deterioration containing green and brown-coloured corrosion which were sampled for characterization by a multi-analytical protocol. Basic copper chlorides atacamite and paratacamite were identified in the context of mineral phases along with chlorobenzenes in the green corrosion. Chlorobenzenes are common soil contaminants in rural areas from the use of pesticides, many of which were banned more than 50 years ago. Here we show that their presence is associated with accelerated corrosion, and this provides a threat to the preservation of archaeological metal objects in the ground.


Assuntos
Cobre , Praguicidas , Cloretos , Clorobenzenos , Cobre/análise , Corrosão , Minerais , Solo , Reino Unido
11.
Nat Commun ; 13(1): 4785, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970853

RESUMO

Ivosidenib, an inhibitor of isocitrate dehydrogenase 1 (IDH1) R132C and R132H variants, is approved for the treatment of acute myeloid leukaemia (AML). Resistance to ivosidenib due to a second site mutation of IDH1 R132C, leading to IDH1 R132C/S280F, has emerged. We describe biochemical, crystallographic, and cellular studies on the IDH1 R132C/S280F and R132H/S280F variants that inform on the mechanism of second-site resistance, which involves both modulation of inhibitor binding at the IDH1 dimer-interface and alteration of kinetic properties, which enable more efficient 2-HG production relative to IDH1 R132C and IDH1 R132H. Importantly, the biochemical and cellular results demonstrate that it should be possible to overcome S280F mediated resistance in AML patients by using alternative inhibitors, including some presently in phase 2 clinical trials.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Resistencia a Medicamentos Antineoplásicos/genética , Glicina/análogos & derivados , Glicina/uso terapêutico , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Piridinas/uso terapêutico
12.
Pathogens ; 11(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35890016

RESUMO

Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.

13.
Cell Death Dis ; 13(6): 573, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764612

RESUMO

Channelling of glucose via glycogen, known as the glycogen shunt, may play an important role in the metabolism of brain tumours, especially in hypoxic conditions. We aimed to dissect the role of glycogen degradation in glioblastoma (GBM) response to ionising radiation (IR). Knockdown of the glycogen phosphorylase liver isoform (PYGL), but not the brain isoform (PYGB), decreased clonogenic growth and survival of GBM cell lines and sensitised them to IR doses of 10-12 Gy. Two to five days after IR exposure of PYGL knockdown GBM cells, mitotic catastrophy and a giant multinucleated cell morphology with senescence-like phenotype developed. The basal levels of the lysosomal enzyme alpha-acid glucosidase (GAA), essential for autolysosomal glycogen degradation, and the lipidated forms of gamma-aminobutyric acid receptor-associated protein-like (GABARAPL1 and GABARAPL2) increased in shPYGL U87MG cells, suggesting a compensatory mechanism of glycogen degradation. In response to IR, dysregulation of autophagy was shown by accumulation of the p62 and the lipidated form of GABARAPL1 and GABARAPL2 in shPYGL U87MG cells. IR increased the mitochondrial mass and the colocalisation of mitochondria with lysosomes in shPYGL cells, thereby indicating reduced mitophagy. These changes coincided with increased phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase 2, slower ATP generation in response to glucose loading and progressive loss of oxidative phosphorylation. The resulting metabolic deficiencies affected the availability of ATP required for mitosis, resulting in the mitotic catastrophy observed in shPYGL cells following IR. PYGL mRNA and protein levels were higher in human GBM than in normal human brain tissues and high PYGL mRNA expression in GBM correlated with poor patient survival. In conclusion, we show a major new role for glycogen metabolism in GBM cancer. Inhibition of glycogen degradation sensitises GBM cells to high-dose IR indicating that PYGL is a potential novel target for the treatment of GBMs.


Assuntos
Glioblastoma , Trifosfato de Adenosina , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Glucose/farmacologia , Glicogênio/metabolismo , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Humanos , Fígado/metabolismo , Isoformas de Proteínas , RNA Mensageiro
14.
Physiol Rep ; 10(10): e15309, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614576

RESUMO

Elevating blood ketones may enhance exercise capacity and modulate adaptations to exercise training; however, these effects may depend on whether hyperketonemia is induced endogenously through dietary carbohydrate restriction, or exogenously through ketone supplementation. To determine this, we compared the effects of endogenously- and exogenously-induced hyperketonemia on exercise capacity and adaptation. Trained endurance athletes undertook 6 days of laboratory based cycling ("race") whilst following either: a carbohydrate-rich control diet (n = 7; CHO); a carbohydrate-rich diet + ketone drink four-times daily (n = 7; Ex Ket); or a ketogenic diet (n = 7; End Ket). Exercise capacity was measured daily, and adaptations in exercise metabolism, exercise physiology and postprandial insulin sensitivity (via an oral glucose tolerance test) were measured before and after dietary interventions. Urinary ß-hydroxybutyrate increased by ⁓150-fold and ⁓650-fold versus CHO with Ex Ket and End Ket, respectively. Exercise capacity was increased versus pre-intervention by ~5% on race day 1 with CHO (p < 0.05), by 6%-8% on days 1, 4, and 6 (all p < 0.05) with Ex Ket and decreased by 48%-57% on all race days (all p > 0.05) with End Ket. There was an ⁓3-fold increase in fat oxidation from pre- to post-intervention (p < 0.05) with End Ket and increased perceived exercise exertion (p < 0.05). No changes in exercise substrate metabolism occurred with Ex Ket, but participants had blunted postprandial insulin sensitivity (p < 0.05). Dietary carbohydrate restriction and ketone supplementation both induce hyperketonemia; however, these are distinct physiological conditions with contrasting effects on exercise capacity and adaptation to exercise training.


Assuntos
Resistência à Insulina , Adaptação Fisiológica , Carboidratos da Dieta/farmacologia , Exercício Físico , Humanos , Cetonas , Resistência Física/fisiologia
15.
Sci Rep ; 12(1): 4579, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301348

RESUMO

Silk has been a luxurious commodity throughout modern human history and sericulture has played an important role in ancient global trade as well as technological and cultural developments. Archaeological findings suggest that prior to domestication of the mulberry silkworm (Bombyx mori) silks were obtained from a range of silk-producing moth species with regional specificity. However, investigating the origins of sericulture is difficult as classification of silks by species-type has proved technically challenging. We therefore investigated a range of methods for solubilising modern and archaeological silks and developed a mass spectrometry-based proteomics method that was able to successfully differentiate modern Bombyx, Antheraea, and Samia-produced silks down to the species level. We subsequently analysed archaeological silk materials excavated from the ancient city of Palmyra. Solubilisation behaviour and proteomic analysis provided evidence that the Palmyra silks were constructed from wild silk derived from Antheraea mylitta, the Indian Tasar silkworm. We believe this is the first species-level biochemical evidence that supports archaeological theories about the production and trade of Indian wild silks in antiquity.


Assuntos
Bombyx , Mariposas , Animais , Bombyx/metabolismo , Espectrometria de Massas , Mariposas/metabolismo , Proteômica , Seda/química
16.
EBioMedicine ; 76: 103856, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35152152

RESUMO

BACKGROUND: Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials in COVID19 without characterisation of Pharmacokinetics /Pharmacodynamics including safety data. One such drug is nafamostat mesylate. METHODS: We present the findings of a phase Ib/IIa open label, platform randomised controlled trial of intravenous nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), nafamostat or an alternative therapy. Nafamostat was administered as an intravenous infusion at a dose of 0.2 mg/kg/h for a maximum of seven days. The analysis population included those who received any dose of the trial drug and all patients randomised to SoC. The primary outcomes of our trial were the safety and tolerability of intravenous nafamostat as an add on therapy for patients hospitalised with COVID-19 pneumonitis. FINDINGS: Data is reported from 42 patients, 21 of which were randomly assigned to receive intravenous nafamostat. 86% of nafamostat-treated patients experienced at least one AE compared to 57% of the SoC group. The nafamostat group were significantly more likely to experience at least one AE (posterior mean odds ratio 5.17, 95% credible interval (CI) 1.10 - 26.05) and developed significantly higher plasma creatinine levels (posterior mean difference 10.57 micromol/L, 95% CI 2.43-18.92). An average longer hospital stay was observed in nafamostat patients, alongside a lower rate of oxygen free days (rate ratio 0.55-95% CI 0.31-0.99, respectively). There were no other statistically significant differences in endpoints between nafamostat and SoC. PK data demonstrated that intravenous nafamostat was rapidly broken down to inactive metabolites. We observed no significant anticoagulant effects in thromboelastometry. INTERPRETATION: In hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous nafamostat, and there were additional adverse events. FUNDING: DEFINE was funded by LifeArc (an independent medical research charity) under the STOPCOVID award to the University of Edinburgh. We also thank the Oxford University COVID-19 Research Response Fund (BRD00230).


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Benzamidinas/uso terapêutico , Tratamento Farmacológico da COVID-19 , Guanidinas/uso terapêutico , Administração Intravenosa , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios não Esteroides/farmacocinética , Benzamidinas/efeitos adversos , Benzamidinas/farmacocinética , Biomarcadores/sangue , Biomarcadores/metabolismo , COVID-19/mortalidade , COVID-19/virologia , Esquema de Medicação , Feminino , Guanidinas/efeitos adversos , Guanidinas/farmacocinética , Meia-Vida , Humanos , Imunofenotipagem , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Resultado do Tratamento , Carga Viral
17.
Front Immunol ; 13: 895488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591218

RESUMO

Macrophage distribution density is tightly regulated within the body, yet the importance of macrophage crowding during in vitro culture is largely unstudied. Using a human induced pluripotent stem cell (iPSC)-derived macrophage model of tissue resident macrophages, we characterize how increasing macrophage culture density changes their morphology and phenotype before and after inflammatory stimulation. In particular, density drives changes in macrophage inflammatory cytokine and chemokine secretion in both resting and activated states. This density regulated inflammatory state is also evident in blood monocyte derived-macrophages, the human monocytic THP-1 immortalized cell line, and iPSC-derived microglia. Density-dependent changes appear to be driven by a transferable soluble factor, yet the precise mechanism remains unknown. Our findings highlight cell plating density as an important but frequently overlooked consideration of in vitro macrophage research relevant to a variety of fields ranging from basic macrophage cell biology to disease studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Citocinas/metabolismo
18.
Biochem Soc Trans ; 49(6): 2561-2572, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34854890

RESUMO

Human isocitrate dehydrogenase (IDH) genes encode for the IDH1, 2 & 3 isoenzymes which catalyse the formation of 2-oxoglutarate from isocitrate and are essential for normal mammalian metabolism. Although mutations in these genes in cancer were long thought to lead to a 'loss of function', combined genomic and metabolomic studies led to the discovery that a common IDH 1 mutation, present in low-grade glioma and acute myeloid leukaemia (AML), yields a variant (R132H) with a striking change of function leading to the production of (2R)-hydroxyglutarate (2HG) which consequently accumulates in large quantities both within and outside cells. Elevated 2HG is proposed to promote tumorigenesis, although the precise mechanism by which it does this remains uncertain. Inhibitors of R132H IDH1, and other subsequently identified cancer-linked 2HG producing IDH variants, are approved for clinical use in the treatment of chemotherapy-resistant AML, though resistance enabled by additional substitutions has emerged. In this review, we provide a current overview of cancer linked IDH mutations focussing on their distribution in different cancer types, the effects of substitution mutations on enzyme activity, the mode of action of recently developed inhibitors, and their relationship with emerging resistance-mediating double mutations.


Assuntos
Isocitrato Desidrogenase/genética , Isoenzimas/genética , Neoplasias/genética , Humanos , Mutação , Neoplasias/enzimologia
19.
Commun Biol ; 4(1): 1243, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725432

RESUMO

Cancer linked isocitrate dehydrogenase (IDH) 1 variants, notably R132H IDH1, manifest a 'gain-of-function' to reduce 2-oxoglutarate to 2-hydroxyglutarate. High-throughput screens have enabled clinically useful R132H IDH1 inhibitors, mostly allosteric binders at the dimer interface. We report investigations on roles of divalent metal ions in IDH substrate and inhibitor binding that rationalise this observation. Mg2+/Mn2+ ions enhance substrate binding to wt IDH1 and R132H IDH1, but with the former manifesting lower Mg2+/Mn2+ KMs. The isocitrate-Mg2+ complex is the preferred wt IDH1 substrate; with R132H IDH1, separate and weaker binding of 2-oxoglutarate and Mg2+ is preferred. Binding of R132H IDH1 inhibitors at the dimer interface weakens binding of active site Mg2+ complexes; their potency is affected by the Mg2+ concentration. Inhibitor selectivity for R132H IDH1 over wt IDH1 substantially arises from different stabilities of wt and R132H IDH1 substrate-Mg2+ complexes. The results reveal the importance of substrate-metal ion complexes in wt and R132H IDH1 catalysis and the basis for selective R132H IDH1 inhibition. Further studies on roles of metal ion complexes in TCA cycle and related metabolism, including from an evolutionary perspective, are of interest.


Assuntos
Variação Genética , Isocitrato Desidrogenase/genética , Magnésio/metabolismo , Manganês/metabolismo , Íons/metabolismo , Isocitrato Desidrogenase/metabolismo , Oncogenes
20.
Biosci Rep ; 41(8)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313294

RESUMO

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which started in late 2019, has caused huge social and economic losses. A growing number of investigators are focusing on understanding the interaction of SARS-CoV-2 with host cellular processes to find therapeutic approaches. New data suggest that lipid metabolism may play a significant role in regulating the response of immune cells like macrophages to viral infection, thereby affecting the outcome of the disease. Therefore, understanding the role of lipid metabolism could help develop new therapeutic approaches to mitigate the social and economic cost of coronavirus disease 2019 (COVID-19).


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Metabolismo dos Lipídeos/imunologia , Lipidômica , SARS-CoV-2/química , COVID-19/epidemiologia , Homeostase/imunologia , Humanos , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA