Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Metab ; 20(5): 910-918, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25440061

RESUMO

The LXR-regulated E3 ubiquitin ligase IDOL controls LDLR receptor stability independent of SREBP and PCSK9, but its relevance to plasma lipid levels is unknown. Here we demonstrate that the effects of the LXR-IDOL axis are both tissue and species specific. In mice, LXR agonist induces Idol transcript levels in peripheral tissues but not in liver, and does not change plasma LDL levels. Accordingly, Idol-deficient mice exhibit elevated LDLR protein levels in peripheral tissues, but not in the liver. By contrast, LXR activation in cynomolgus monkeys induces hepatic IDOL expression, reduces LDLR protein levels, and raises plasma LDL levels. Knockdown of IDOL in monkeys with an antisense oligonucleotide blunts the effect of LXR agonist on LDL levels. These results implicate IDOL as a modulator of plasma lipid levels in primates and support further investigation into IDOL inhibition as a potential strategy for LDL lowering in humans.


Assuntos
LDL-Colesterol/sangue , Fígado/metabolismo , Receptores Nucleares Órfãos/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , LDL-Colesterol/metabolismo , Haplorrinos , Humanos , Receptores X do Fígado , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/metabolismo , Especificidade da Espécie
2.
Arterioscler Thromb Vasc Biol ; 34(9): 1880-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969772

RESUMO

OBJECTIVE: Excessive caloric intake is associated with obesity and adipose tissue dysfunction. However, the role of dietary cholesterol in this process is unknown. The aim of this study was to determine whether increasing dietary cholesterol intake alters adipose tissue cholesterol content, adipocyte size, and endocrine function in nonhuman primates. APPROACH AND RESULTS: Age-matched, male African Green monkeys (n=5 per group) were assigned to 1 of 3 diets containing 0.002 (low [Lo]), 0.2 (medium [Med]), or 0.4 (high [Hi]) mg cholesterol/kcal. After 10 weeks of diet feeding, animals were euthanized for adipose tissue, liver, and plasma collection. With increasing dietary cholesterol, free cholesterol (FC) content and adipocyte size increased in a stepwise manner in visceral, but not in subcutaneous fat, with a significant association between visceral adipocyte size and FC content (r(2)=0.298; n=15; P=0.035). In visceral fat, dietary cholesterol intake was associated with (1) increased proinflammatory gene expression and macrophage recruitment, (2) decreased expression of genes involved in cholesterol biosynthesis and lipoprotein uptake, and (3) increased expression of proteins involved in FC efflux. CONCLUSIONS: Increasing dietary cholesterol selectively increases visceral fat adipocyte size, FC and macrophage content, and proinflammatory gene expression in nonhuman primates. Visceral fat cells seem to compensate for increased dietary cholesterol by limiting cholesterol uptake/synthesis and increasing FC efflux pathways.


Assuntos
Adipócitos/efeitos dos fármacos , Colesterol na Dieta/toxicidade , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Subcutânea/efeitos dos fármacos , Adipócitos/patologia , Animais , Tamanho Celular/efeitos dos fármacos , Chlorocebus aethiops , Colesterol/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia , Inflamação/genética , Gordura Intra-Abdominal/química , Gordura Intra-Abdominal/patologia , Lipoproteínas/metabolismo , Fígado/química , Masculino , Especificidade de Órgãos , Gordura Subcutânea/química , Gordura Subcutânea/patologia
3.
PLoS One ; 9(1): e84418, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404162

RESUMO

An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.


Assuntos
Colesterol/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Lipoproteínas/metabolismo , Lipoproteínas VLDL/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Oligorribonucleotídeos Antissenso/administração & dosagem , Oligorribonucleotídeos Antissenso/genética , Receptores de LDL/metabolismo
4.
Am J Pathol ; 182(4): 1131-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23380580

RESUMO

Plant sterols, or phytosterols, are very similar in structure to cholesterol and are abundant in typical diets. The reason for poor absorption of plant sterols by the body is still unknown. Mutations in the ABC transporters G5 and G8 are known to cause an accumulation of plant sterols in blood and tissues (sitosterolemia). To determine the significance of phytosterol exclusion from the body, we fed wild-type and ABCG5/G8 knockout mice a diet enriched with plant sterols. The high-phytosterol diet was extremely toxic to the ABCG5/G8 knockout mice but had no adverse effects on wild-type mice. ABCG5/G8 knockout mice died prematurely and developed a phenotype that included high levels of plant sterols in many tissues, liver abnormalities, and severe cardiac lesions. This study is the first to report such toxic effects of phytosterol accumulation in ABCG5/G8 knockout mice. We believe these new data support the conclusion that plant sterols are excluded from the body because they are toxic when present at high levels.


Assuntos
Transportadores de Cassetes de Ligação de ATP/deficiência , Comportamento Alimentar/efeitos dos fármacos , Lipoproteínas/deficiência , Fitosteróis/toxicidade , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Dieta , Eritrócitos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatomegalia/sangue , Hepatomegalia/genética , Hepatomegalia/patologia , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Esplenomegalia/sangue , Esplenomegalia/genética , Esplenomegalia/patologia , Aumento de Peso/efeitos dos fármacos
5.
J Shoulder Elbow Surg ; 22(5): 681-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22981355

RESUMO

BACKGROUND: More than one-quarter of Americans have hypercholesterolemia and/or are being treated with cholesterol-lowering medications. Given the systemic nature of hypercholesterolemia and remaining questions regarding its effect on tendons at a local level, we sought to assess the utility of small versus large animal model systems for translational studies by exploring the effect of hypercholesterolemia on supraspinatus tendon elastic mechanical properties in mice, rats, and monkeys. We hypothesized that stiffness and elastic modulus would be increased in tendons across species due to hypercholesterolemia. MATERIALS AND METHODS: Supraspinatus tendons from normal (control) and high-cholesterol (HC) mice, rats, and monkeys were used in this study. After dissection, tendons were geometrically measured and tensile tested with tissue strain measured optically. RESULTS: Overall, HC animals had significantly altered plasma lipid profiles. Biomechanical testing showed a significant increase in stiffness compared with control in HC mice and rats, as well as a nonsignificant trend for HC monkeys. Elastic modulus was also significantly increased in HC mice and monkeys, with HC rats showing a trend. CONCLUSIONS: The consistency of our findings across species and between small and large animals, combined with the fact that the aged mice were exposed to lifelong hypercholesterolemia (compared with rats and nonhuman primates, which were fed HC diets), suggests that these increased properties may be inherent to the effect of hypercholesterolemia on supraspinatus tendon rather than due to an effect of cumulative exposure time to the effects of HC. Further investigation is needed to confirm this concept.


Assuntos
Módulo de Elasticidade/fisiologia , Hipercolesterolemia/fisiopatologia , Tendões/fisiopatologia , Animais , Fenômenos Biomecânicos , Chlorocebus aethiops , Modelos Animais de Doenças , Hipercolesterolemia/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
6.
J Clin Invest ; 122(2): 558-68, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22214850

RESUMO

Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small quantities of oxidized lipoproteins are also present in the circulation of patients with coronary artery disease. We therefore hypothesized that hypercholesterolemia leads to elevated levels of oxidized LDL (oxLDL) in plasma and that this induces expression of the procoagulant protein tissue factor (TF) in monocytes. In support of this hypothesis, we report here that oxLDL induced TF expression in human monocytic cells and monocytes. In addition, patients with familial hypercholesterolemia had elevated levels of plasma microparticle (MP) TF activity. Furthermore, a high-fat diet induced a time-dependent increase in plasma MP TF activity and activation of coagulation in both LDL receptor-deficient mice and African green monkeys. Genetic deficiency of TF in bone marrow cells reduced coagulation in hypercholesterolemic mice, consistent with a major role for monocyte-derived TF in the activation of coagulation. Similarly, a deficiency of either TLR4 or TLR6 reduced levels of MP TF activity. Simvastatin treatment of hypercholesterolemic mice and monkeys reduced oxLDL, monocyte TF expression, MP TF activity, activation of coagulation, and inflammation, without affecting total cholesterol levels. Our results suggest that the prothrombotic state associated with hypercholesterolemia is caused by oxLDL-mediated induction of TF expression in monocytes via engagement of a TLR4/TLR6 complex.


Assuntos
Anticolesterolemiantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Hipercolesterolemia/sangue , Monócitos/metabolismo , Sinvastatina/farmacologia , Tromboplastina/metabolismo , Animais , Coagulação Sanguínea/fisiologia , Células Cultivadas , Chlorocebus aethiops , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Receptores de LDL/genética , Receptores de LDL/metabolismo , Trombose , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo
7.
Nature ; 478(7369): 404-7, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22012398

RESUMO

Cardiovascular disease remains the leading cause of mortality in westernized countries, despite optimum medical therapy to reduce the levels of low-density lipoprotein (LDL)-associated cholesterol. The pursuit of novel therapies to target the residual risk has focused on raising the levels of high-density lipoprotein (HDL)-associated cholesterol in order to exploit its atheroprotective effects. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of lipid metabolism and are thus a new class of target for therapeutic intervention. MicroRNA-33a and microRNA-33b (miR-33a/b) are intronic miRNAs whose encoding regions are embedded in the sterol-response-element-binding protein genes SREBF2 and SREBF1 (refs 3-5), respectively. These miRNAs repress expression of the cholesterol transporter ABCA1, which is a key regulator of HDL biogenesis. Recent studies in mice suggest that antagonizing miR-33a may be an effective strategy for raising plasma HDL levels and providing protection against atherosclerosis; however, extrapolating these findings to humans is complicated by the fact that mice lack miR-33b, which is present only in the SREBF1 gene of medium and large mammals. Here we show in African green monkeys that systemic delivery of an anti-miRNA oligonucleotide that targets both miR-33a and miR-33b increased hepatic expression of ABCA1 and induced a sustained increase in plasma HDL levels over 12 weeks. Notably, miR-33 antagonism in this non-human primate model also increased the expression of miR-33 target genes involved in fatty acid oxidation (CROT, CPT1A, HADHB and PRKAA1) and reduced the expression of genes involved in fatty acid synthesis (SREBF1, FASN, ACLY and ACACA), resulting in a marked suppression of the plasma levels of very-low-density lipoprotein (VLDL)-associated triglycerides, a finding that has not previously been observed in mice. These data establish, in a model that is highly relevant to humans, that pharmacological inhibition of miR-33a and miR-33b is a promising therapeutic strategy to raise plasma HDL and lower VLDL triglyceride levels for the treatment of dyslipidaemias that increase cardiovascular disease risk.


Assuntos
Chlorocebus aethiops , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas HDL/sangue , Lipoproteínas VLDL/sangue , Fígado/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Oligorribonucleotídeos Antissenso/farmacologia , Triglicerídeos/sangue , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops/sangue , Chlorocebus aethiops/genética , Chlorocebus aethiops/metabolismo , LDL-Colesterol/sangue , Inativação Gênica , Células HEK293 , Humanos , Fígado/metabolismo , Masculino , MicroRNAs/metabolismo , Fatores de Tempo
8.
PLoS One ; 6(4): e19420, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559365

RESUMO

Genes involved in cholesterol biosynthesis and uptake are transcriptionally regulated in response to cellular sterol content in a coordinated manner. A number of these genes, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and LDL receptor (LDLR), undergo alternative splicing, resulting in reductions of enzyme or protein activity. Here we demonstrate that cellular sterol depletion suppresses, and sterol loading induces, alternative splicing of multiple genes involved in the maintenance of cholesterol homeostasis including HMGCR and LDLR, the key regulators of cellular cholesterol biosynthesis and uptake, respectively. These changes were observed in both in vitro studies of the HepG2 human hepatoma derived cell line, as well as in vivo studies of St. Kitts vervets, also known as African green monkeys, a commonly used primate model for investigating cholesterol metabolism. These effects are mediated in part by sterol regulation of polypyrimidine tract binding protein 1 (PTBP1), since knock-down of PTBP1 eliminates sterol induced changes in alternative splicing of several of these genes. Single nucleotide polymorphisms (SNPs) that influence HMGCR and LDLR alternative splicing (rs3846662 and rs688, respectively), have been associated with variation in plasma LDL-cholesterol levels. Sterol-induced changes in alternative splicing are blunted in carriers of the minor alleles for each of these SNPs, indicating an interaction between genetic and non-genetic regulation of this process. Our results implicate alternative splicing as a novel mechanism of enhancing the robust transcriptional response to conditions of cellular cholesterol depletion or accumulation. Thus coordinated regulation of alternative splicing may contribute to cellular cholesterol homeostasis as well as plasma LDL levels.


Assuntos
Processamento Alternativo , Colesterol/metabolismo , Regulação da Expressão Gênica , Alelos , Animais , Linhagem Celular , Chlorocebus aethiops , Éxons , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , Receptores de LDL/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA