Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 14(6): 9471-88, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24871989

RESUMO

The current generation of Mobile Mapping Systems (MMSs) capture high density spatial data in a short time-frame. The quantity of data is difficult to predict as there is no concrete understanding of the point density that different scanner configurations and hardware settings will exhibit for objects at specific distances. Obtaining the required point density impacts survey time, processing time, data storage and is also the underlying limit of automated algorithms. This paper details a novel method for calculating point and profile information for terrestrial MMSs which are required for any point density calculation. Through application of algorithms utilising 3D surface normals and 2D geometric formulae, the theoretically optimal profile spacing and point spacing are calculated on targets. Both of these elements are a major factor in calculating point density on arbitrary objects, such as road signs, poles or buildings-all important features in asset management surveys.

2.
Appl Opt ; 47(19): D71-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18594582

RESUMO

When a digital hologram is reconstructed, only points located at the reconstruction distance are in focus. We have developed a novel technique for creating an in-focus image of the macroscopic objects encoded in a digital hologram. This extended focused image is created by combining numerical reconstructions with depth information extracted by using our depth-from-focus algorithm. To our knowledge, this is the first technique that creates extended focused images of digital holograms encoding macroscopic objects. We present results for digital holograms containing low- and high-contrast macroscopic objects.

3.
Opt Lett ; 32(10): 1229-31, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17440543

RESUMO

We present a technique for performing segmentation of macroscopic three-dimensional objects recorded using in-line digital holography. We numerically reconstruct a single perspective of each object at a range of depths. At each point in the digital wavefront we calculate variance about a neighborhood. The maximum variance at each point over all depths is thresholded to classify it as an object pixel or a background pixel. Segmentation results for objects of low and high contrast are presented.

4.
Appl Opt ; 45(13): 2975-85, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16639445

RESUMO

We propose a task-specific digital holographic capture system for three-dimensional scenes, which can reduce the amount of data sent from the camera system to the receiver and can effectively reconstruct partially occluded objects. The system requires knowledge of the object of interest, but it does not require a priori knowledge of either the occlusion or the distance the object is from the camera. Subwindows of the camera-plane Fresnel field are digitally propagated to reveal different perspectives of the scene, and these are combined to overcome the unknown foreground occlusions. The nature of the occlusions and the effect of subwindows are analyzed thoroughly by using the Wigner distribution function. We demonstrate that a careful combination of reconstructions from subwindows can reveal features that are not apparent in a reconstruction from the whole hologram. We provide results by using optically captured digital holograms of real-world objects and simulated occlusions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA