Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(3): H522-H537, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180450

RESUMO

Heart failure with preserved ejection fraction (HFpEF) afflicts over half of all patients with heart failure and is a debilitating and fatal syndrome affecting postmenopausal women more than any other demographic. This bias toward older females calls into question the significance of menopause in the development of HFpEF, but this question has not been probed in detail. In this study, we report the first investigation into the impact of ovary-intact menopause in the context of HFpEF. To replicate the human condition as faithfully as possible, vinylcyclohexene dioxide (VCD) was used to accelerate ovarian failure (AOF) in female mice while leaving the ovaries intact. HFpEF was established with a mouse model that involves two stressors typical in humans: a high-fat diet and hypertension induced from the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME). In young female mice, AOF or HFpEF-associated stressors independently induced abnormal myocardial strain indicative of early subclinical systolic and diastolic cardiac dysfunction. HFpEF but not AOF was associated with elevations in systolic blood pressure. Increased myocyte size and reduced myocardial microvascular density were not observed in any group. Also, a broad panel of measurements that included echocardiography, invasive pressure measurements, histology, and serum hormones revealed no interaction between AOF and HFpEF. Interestingly, AOF did evoke a higher density of infiltrating cardiac immune cells in both healthy and HFpEF mice, suggestive of proinflammatory effects. In contrast to young mice, middle-aged "old" mice did not exhibit cardiac dysfunction from estrogen deprivation alone or from HFpEF-related stressors.NEW & NOTEWORTHY This is the first preclinical study to examine the impact of ovary-intact menopause [accelerated ovarian failure (AOF)] on HFpEF. Echocardiography of young female mice revealed early evidence of diastolic and systolic cardiac dysfunction apparent only on strain imaging in HFpEF only, AOF only, or the combination. Surprisingly, AOF did not exacerbate the HFpEF phenotype. Results in middle-aged "old" females also showed no interaction between HFpEF and AOF and, importantly, no cardiovascular impact from HFpEF or AOF.


Assuntos
Cardiomiopatias , Cardiopatias , Insuficiência Cardíaca , Humanos , Pessoa de Meia-Idade , Feminino , Camundongos , Animais , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Ovário/patologia , Volume Sistólico/fisiologia , Menopausa
2.
Acta Biomater ; 175: 214-225, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38158104

RESUMO

The ex vivo endothelialization of small diameter vascular prostheses can prolong their patency. Here, we demonstrate that heterotypic interactions between human adipose tissue-derived endothelial cells and perivascular cells can be exploited to accelerate the endothelialization of an electrospun ionomeric polyurethane scaffold. The scaffold was used to physically separate endothelial cells from perivascular cells to prevent their diffuse neo-intimal hyperplasia and spontaneous tubulogenesis, yet enable their paracrine cross-talk to accelerate the integration of the endothelial cells into a temporally stable endothelial lining of a continuous, elongated, and aligned morphology. Perivascular cells stimulated endothelial basement membrane protein production and suppressed their angiogenic and inflammatory activation to accelerate this biomimetic morphogenesis of the endothelium. These findings demonstrate the feasibility and underscore the value of exploiting heterotypic interactions between endothelial cells and perivascular cells for the fabrication of an endothelial lining intended for small diameter arterial reconstruction. STATEMENT OF SIGNIFICANCE: Adipose tissue is an abundant, accessible, and uniquely dispensable source of endothelial cells and perivascular cells for vascular tissue engineering. While their spontaneous self-assembly into microvascular networks is routinely exploited for the vascularization of engineered tissues, it threatens the temporal stability of an endothelial lining intended for small diameter arterial reconstruction. Here, we demonstrate that an electrospun polyurethane scaffold can be used to physically separate endothelial cells from perivascular cells to prevent their spontaneous capillary morphogenesis, yet enable their cross-talk to promote the formation of a stable endothelium. Our findings demonstrate the feasibility of engineering an endothelial lining from human adipose tissue, poising it for the rapid ex vivo endothelialization of small diameter vascular prostheses in an autologous, patient-specific manner.


Assuntos
Células Endoteliais , Poliuretanos , Humanos , Poliuretanos/metabolismo , Endotélio , Tecido Adiposo/metabolismo , Engenharia Tecidual , Prótese Vascular
3.
STAR Protoc ; 4(1): 101933, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36574341

RESUMO

Here, we describe a protocol for purifying functional clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) from Staphylococcus aureus within 24 h and over 90% purity. SaCas9 purification begins with immobilized metal affinity chromatography, followed by cation exchange chromatography, and ended with centrifugal concentrators. The simplicity, cost-effectiveness, and reproducibility of such protocols will enable general labs to produce a sizable amount of Cas9 proteins, further accelerating CRISPR research.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Staphylococcus aureus/genética , Análise Custo-Benefício , Reprodutibilidade dos Testes
4.
Bio Protoc ; 12(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35865115

RESUMO

Human adipose tissue-resident microvascular endothelial cells are not only garnering attention for their emergent role in the pathogenesis of obesity-related metabolic disorders, but are also of considerable interest for vascular tissue engineering due, in part, to the abundant, accessible, and uniquely dispensable nature of the tissue. Here, we delineate a protocol for the acquisition of microvascular endothelial cells from human fat. A cheaper, smaller, and simpler alternative to fluorescence-assisted cell sorting for the immunoselection of cells, our protocol adapts magnet-assisted cell sorting for the isolation of endothelial cells from enzymatically digested adipose tissue and the subsequent enrichment of their primary cultures. Strategies are employed to mitigate the non-specific uptake of immunomagnetic microparticles, enabling the reproducible acquisition of human adipose tissue-resident microvascular endothelial cells with purities ≥98%. They exhibit morphological, molecular, and functional hallmarks of endothelium, yet retain a unique proteomic signature when compared with endothelial cells derived from different vascular beds. Their cultures can be expanded for >10 population doublings and can be maintained at confluence for at least 28 days without being overgrown by residual stromal cells from the cell sorting procedure. The isolation of human adipose tissue-resident microvascular endothelial cells can be completed within 6 hours and their enrichment within 2 hours, following approximately 7 days in culture. Graphical abstract.

5.
Biomater Biosyst ; 6: 100049, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36824164

RESUMO

Adipose tissue is an abundant, accessible, and uniquely dispensable source of cells for vascular tissue engineering. Despite its intrinsic endothelial cells, considerable effort is directed at deriving endothelium from its resident stem and progenitor cells. Here, we investigate the composition of human adipose tissue and characterize the phenotypes of its constituent cells in order to help ascertain their potential utility for vascular tissue engineering. Unsupervised clustering based on cell-surface protein signatures failed to detect CD45-CD31-VEGFR2+ endothelial progenitor cells within adipose tissue, but supported further investigation of its resident CD45-CD31+ microvascular endothelial cells (HAMVECs) and CD45-CD31- stromal/stem cells (ASCs). The endothelial differentiation of ASCs altered their proteome, but it remained distinct from that of primary endothelial cell controls - as well as HAMVECs - regardless of their arterial-venous specification or macrovascular-microvascular origin. Rather, ASCs retained a proteome indicative of a perivascular phenotype, which was supported by their ability to facilitate the capillary morphogenesis of HAMVECs. This study supports the use of HAMVECs for the generation of endothelium. It suggests that the utility of ASCs for vascular tissue engineering lies in their capacity to remodel the extracellular matrix and to function as mural cells.

6.
ACS Appl Mater Interfaces ; 13(49): 58352-58368, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34873903

RESUMO

Developing safe and effective strategies to deliver biomolecules such as oligonucleotides and proteins into cells has grown in importance over recent years, with an increasing demand for non-viral methods that enable clinical translation. Here, we investigate uniquely configured oligo-urethane nanoparticles based on synthetic chemistries that minimize the release of pro-inflammatory biomarkers from immune cells, show low cytotoxicity in a broad range of cells, and efficiently deliver oligonucleotides and proteins into mammalian cells. The mechanism of cell uptake for the self-assembled oligo-urethane nanoparticles was shown to be directed by caveolae-dependent endocytosis in murine myoblasts (C2C12) cells. Inhibiting caveolae functions with genistein and methyl-ß-cyclodextrin limited nanoparticle internalization. The nanoparticles showed a very high delivery efficiency for the genetic material (a 47-base oligonucleotide) (∼80% incorporation into cells) as well as the purified protein (full length firefly luciferase, 67 kDa) into human embryonic kidney (HEK293T) cells. Luciferase enzyme activity in HEK293T cells demonstrated that intact and functional proteins could be delivered and showed a significant extension of activity retention up to 24 h, well beyond the 2 h half-life of the free enzyme. This study introduces a novel self-assembled oligo-urethane nanoparticle delivery platform with very low associated production costs, enabled by their scalable chemistry (the benchwork cost is $ 0.152/mg vs $ 974.6/mg for typical lipid carriers) that has potential to deliver both oligonucleotides and proteins for biomedical purposes.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Oligonucleotídeos/química , Animais , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Humanos , Luciferases/metabolismo , Teste de Materiais , Camundongos , Estrutura Molecular , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia
7.
Matrix Biol Plus ; 12: 100085, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34693248

RESUMO

Arterial stiffening is a significant predictor of cardiovascular disease development and mortality. In elastic arteries, stiffening refers to the loss and fragmentation of elastic fibers, with a progressive increase in collagen fibers. Type VIII collagen (Col-8) is highly expressed developmentally, and then once again dramatically upregulated in aged and diseased vessels characterized by arterial stiffening. Yet its biophysical impact on the vessel wall remains unknown. The purpose of this study was to test the hypothesis that Col-8 functions as a matrix scaffold to maintain vessel integrity during extracellular matrix (ECM) development. These changes are predicted to persist into the adult vasculature, and we have tested this in our investigation. Through our in vivo and in vitro studies, we have determined a novel interaction between Col-8 and elastin. Mice deficient in Col-8 (Col8-/-) had reduced baseline blood pressure and increased arterial compliance, indicating an enhanced Windkessel effect in conducting arteries. Differences in both the ECM composition and VSMC activity resulted in Col8-/- carotid arteries that displayed increased crosslinked elastin and functional distensibility, but enhanced catecholamine-induced VSMC contractility. In vitro studies revealed that the absence of Col-8 dramatically increased tropoelastin mRNA and elastic fiber deposition in the ECM, which was decreased with exogenous Col-8 treatment. These findings suggest a causative role for Col-8 in reducing mRNA levels of tropoelastin and the presence of elastic fibers in the matrix. Moreover, we also found that Col-8 and elastin have opposing effects on VSMC phenotype, the former promoting a synthetic phenotype, whereas the latter confers quiescence. These studies further our understanding of Col-8 function and open a promising new area of investigation related to elastin biology.

8.
Commun Biol ; 4(1): 1205, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671074

RESUMO

Endothelial cells are among the fundamental building blocks for vascular tissue engineering. However, a clinically viable source of endothelium has continued to elude the field. Here, we demonstrate the feasibility of sourcing autologous endothelium from human fat - an abundant and uniquely dispensable tissue that can be readily harvested with minimally invasive procedures. We investigate the challenges underlying the overgrowth of human adipose tissue-derived microvascular endothelial cells by stromal cells to facilitate the development of a reliable method for their acquisition. Magnet-assisted cell sorting strategies are established to mitigate the non-specific uptake of immunomagnetic microparticles, enabling the enrichment of endothelial cells to purities that prevent their overgrowth by stromal cells. This work delineates a reliable method for acquiring human adipose tissue-derived microvascular endothelial cells in large quantities with high purities that can be readily applied in future vascular tissue engineering applications.


Assuntos
Tecido Adiposo/metabolismo , Separação Celular/métodos , Células Endoteliais/metabolismo , Humanos
9.
J Proteome Res ; 20(5): 2867-2881, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33789425

RESUMO

Heart failure (HF) is associated with pathological remodeling of the myocardium, including the initiation of fibrosis and scar formation by activated cardiac fibroblasts (CFs). Although early CF-dependent scar formation helps prevent cardiac rupture by maintaining the heart's structural integrity, ongoing deposition of the extracellular matrix in the remote and infarct regions can reduce tissue compliance, impair cardiac function, and accelerate progression to HF. In our study, we conducted mass spectrometry (MS) analysis to identify differentially altered proteins and signaling pathways between CFs isolated from 7 day sham and infarcted murine hearts. Surprisingly, CFs from both the remote and infarct regions of injured hearts had a wide number of similarly altered proteins and signaling pathways that were consistent with fibrosis and activation into pathological myofibroblasts. Specifically, proteins enriched in CFs isolated from MI hearts were involved in pathways pertaining to cell-cell and cell-matrix adhesion, chaperone-mediated protein folding, and collagen fibril organization. These results, together with principal component analyses, provided evidence of global CF activation postinjury. Interestingly, however, direct comparisons between CFs from the remote and infarct regions of injured hearts identified 15 differentially expressed proteins between MI remote and MI infarct CFs. Eleven of these proteins (Gpc1, Cthrc1, Vmac, Nexn, Znf185, Sprr1a, Specc1, Emb, Limd2, Pawr, and Mcam) were higher in MI infarct CFs, whereas four proteins (Gstt1, Gstm1, Tceal3, and Inmt) were higher in MI remote CFs. Collectively, our study shows that MI injury induced global changes to the CF proteome, with the magnitude of change reflecting their relative proximity to the site of injury.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose , Proteínas com Domínio LIM , Camundongos , Proteínas dos Microfilamentos , Infarto do Miocárdio/genética , Miocárdio/patologia , Miofibroblastos/patologia
10.
Nat Biomed Eng ; 4(9): 889-900, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661320

RESUMO

Study of the molecular basis of myocardial fibrosis is hampered by limited access to tissues from human patients and by confounding variables associated with sample accessibility, collection, processing and storage. Here, we report an integrative strategy based on mass spectrometry for the phosphoproteomic profiling of normal and fibrotic cardiac tissue obtained from surgical explants from patients with hypertrophic cardiomyopathy, from a transaortic-constriction mouse model of cardiac hypertrophy and fibrosis, and from a heart-on-a-chip model of cardiac fibrosis. We used the integrative approach to map the relative abundance of thousands of proteins, phosphoproteins and phosphorylation sites specific to each tissue source, to identify key signalling pathways driving fibrosis and to screen for anti-fibrotic compounds targeting glycogen synthase kinase 3, which has a consistent role as a key mediator of fibrosis in all three types of tissue specimen. The integrative disease-modelling strategy may reveal new insights into mechanisms of cardiac disease and serve as a test bed for drug screening.


Assuntos
Miocárdio/patologia , Proteômica/métodos , Transdução de Sinais , Animais , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fibrose , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Engenharia Tecidual
11.
Acta Biomater ; 111: 80-90, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32428683

RESUMO

The use of exogenous biomolecules (BM) for the purpose of repairing and regenerating damaged cardiac tissue can yield serious side effects if used for prolonged periods. As well, such strategies can be cost prohibitive depending on the regiment and period of time applied. Alternatively, autologous monocytes/monocyte-derived macrophages (MDM) can provide a viable path towards generating an endogenous source of stimulatory BM. Biomaterials are often considered as delivery vehicles to generate unique profiles of such BM in tissues or to deliver autologous cells, that can influence the nature of BM produced by the cells. MDM cultured on a degradable polar hydrophobic ionic (D-PHI) polyurethane has previously demonstrated a propensity to increase select anti-inflammatory cytokines, and therefore there is good rationale to further investigate a broader spectrum of the cells' BM in order to provide a more complete proteomic analysis of human MDM secretions induced by D-PHI. Further, it is of interest to assess the potential of such BM to influence cells involved in the reparative state of vital tissues such as those that affect cardiac cell function. Hence, this current study examines the proteomic profile of MDM secretions using mass spectrometry for the first time, along with ELISA, following their culture on D-PHI, and compares them to two important reference materials, poly(lactic-co-glycolic acid) (PLGA) and tissue culture polystyrene (TCPS). Secretions collected from D-PHI cultured MDM led to higher levels of regenerative BM, AGRN, TGFBI and ANXA5, but lower levels of pro-fibrotic BM, MMP7, IL-1ß, IL-6 and TNFα,  when compared to MDM secretions collected from PLGA and TCPS. In the application to cardiac cell function, the secretion collected from D-PHI cultured MDM led to more human cardiac fibroblast (HCFs) migration. A lower collagen gel contraction induced by MDM secretions collected from D-PHI was supported by gene array analysis for human fibrosis-related genes. The implication of these findings is that more tailored biomaterials such as D-PHI, may lead to a lower pro-inflammatory phenotype of macrophages when used in cardiac tissue constructs, thereby enabling the development of vehicles for the delivery of interventional therapies, or be applied as coatings for sensor implants in cardiac tissue that minimize fibrosis. The general approach of using synthetic biomaterials in order to induce MDM secretions in a manner that will guide favorable regeneration will be critical in making the choice of biomaterials for tissue regeneration work in the future. STATEMENT OF SIGNIFICANCE: Immune modulation strategies currently applied in cardiac tissue repair are mainly based on the delivery of defined exogenous biomolecules. However, the use of such biomolecules may pose wide ranging systemic effects, thereby rendering them clinically less practical. The chemistry of biomaterials (used as a potential targeted delivery modality to circumvent the broad systemic effects of biomolecules) can not only affect acute and chronic toxicity but also alters the timeframe of the wound healing cascade. In this context, monocytes/monocyte-derive macrophages (MDM) can be harnessed as an immune modulating strategy to promote wound healing by an appropriate choice of the biomaterial. However, there are limited reports on the complete proteome analysis of MDM and their reaction of biomaterial related interventions on cardiac tissues and cells. No studies to date have demonstrated the complete proteome of MDM secretions when these cells were cultured on a non-traditional immune modulatory ionomeric polyurethane D-PHI film. This study demonstrated that MDM cultured on D-PHI expressed significantly higher levels of AGRN, TGFBI and ANXA5 but lower levels of MMP7, IL-1ß, IL-6 and TNFα when compared to MDM cultured on a well-established degradable biomaterials in the medical field, e.g. PLGA and TCPS, which are often used as the relative standards for cell culture work in the biomaterials field. The implications of these findings have relevance to the repair of cardiac tissues. In another aspect of the work, human cardiac fibroblasts showed significantly lower contractility (low collagen gel contraction and low levels of ACTA2) when cultured in the presence of MDM secretions collected after culturing them on D-PHI compared to PLGA and TCPS. The findings place emphasis on the importance of making the choice of biomaterials for tissue engineering and regenerative medicine applied to their use in cardiac tissue repair.


Assuntos
Materiais Biocompatíveis , Proteoma , Fibroblastos , Humanos , Macrófagos , Monócitos , Proteômica
12.
Stem Cells Transl Med ; 8(1): 35-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30269434

RESUMO

Considerable effort has been directed toward deriving endothelial cells (ECs) from adipose-derived mesenchymal stem cells (ASCs) since 2004, when it was first suggested that ECs and adipocytes share a common progenitor. While the capacity of ASCs to express endothelial markers has been repeatedly demonstrated, none constitute conclusive evidence of an endothelial phenotype as all reported markers have been detected in other, non-endothelial cell types. In this study, quantitative phenotypic comparisons to representative EC controls were used to determine the extent of endothelial differentiation being achieved with ASCs. ASCs were harvested from human subcutaneous abdominal white adipose tissue, and their endothelial differentiation was induced using well-established biochemical stimuli. Reverse transcription quantitative real-time polymerase chain reaction and parallel reaction monitoring mass spectrometry were used to quantify their expression of endothelial genes and corresponding proteins, respectively. Flow cytometry was used to quantitatively assess their uptake of acetylated low-density lipoprotein (AcLDL). Human umbilical vein, coronary artery, and dermal microvascular ECs were used as positive controls to reflect the phenotypic heterogeneity between ECs derived from different vascular beds. Biochemically conditioned ASCs were found to upregulate their expression of endothelial genes and proteins, as well as AcLDL uptake, but their abundance remained orders of magnitude lower than that observed in the EC controls despite their global proteomic heterogeneity. The findings of this investigation demonstrate the strikingly limited extent of endothelial differentiation being achieved with ASCs using well-established biochemical stimuli, and underscore the importance of quantitative phenotypic comparisons to representative primary cell controls in studies of differentiation. Stem Cells Translational Medicine 2019;8:35-45.


Assuntos
Células-Tronco Adultas/citologia , Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Plasticidade Celular/fisiologia , Células Cultivadas , Condrogênese/fisiologia , Citometria de Fluxo , Humanos , Lipoproteínas LDL/metabolismo , Osteogênese/fisiologia
13.
Chembiochem ; 15(16): 2411-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25233956

RESUMO

Disruption of calmodulin (CaM)-based protein interactions has been touted as a potential means for modulating several disease pathways. Among these is SOX9, which is a DNA binding protein that is involved in chrondrocyte differentiation and regulation of the hormones that control sexual development. In this work, we employed a "magnetic fishing"/mass spectrometry assay in conjunction with intrinsic fluorescence to examine the interaction of CaM with the CaM-binding domain of SOX9 (SOX-CAL), and to assess the modulation of this interaction by known anti-CaM compounds. Our data show that there is a high affinity interaction between CaM and SOX-CAL (27±9 nM), and that SOX-CAL bound to the same location as the well-known CaM antagonist melittin; unexpectedly, we also found that addition of CaM-binding small molecules initially produced increased SOX-CAL binding, indicative of binding to both the well-known high-affinity CaM binding site and a second, lower-affinity binding site.


Assuntos
Calmodulina/química , Fatores de Transcrição SOX9/química , Sítios de Ligação , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Magnetismo , Espectrometria de Massas , Meliteno/química , Meliteno/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Fatores de Transcrição SOX9/metabolismo , Espectrometria de Fluorescência
14.
Proteins ; 82(2): 187-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23794378

RESUMO

Efficient DNA repair mechanisms frequently limit the effectiveness of chemotherapeutic agents that act through DNA damaging mechanisms. Consequently, proteins involved in DNA repair have increasingly become attractive targets of high-throughput screening initiatives to identify modulators of these pathways. Disruption of the XRCC4-Ligase IV interaction provides a novel means to efficiently halt repair of mammalian DNA double strand break repair; however; the extreme affinity of these proteins presents a major obstacle for drug discovery. A better understanding of the interaction surfaces is needed to provide a more specific target for inhibitor studies. To clearly define key interface(s) of Ligase IV necessary for interaction with XRCC4, we developed a competitive displacement assay using ESI-MS/MS and determined the minimal inhibitory fragment of the XRCC4-interacting region (XIR) capable of disrupting a complex of XRCC4/XIR. Disruption of a single helix (helix 2) within the helix-loop-helix clamp of Ligase IV was sufficient to displace XIR from a preformed complex. Dose-dependent response curves for the disruption of the complex by either helix 2 or helix-loop-helix fragments revealed that potency of inhibition was greater for the larger helix-loop-helix peptide. Our results suggest a susceptibility to inhibition at the interface of helix 2 and future studies would benefit from targeting this surface of Ligase IV to identify modulators that disrupt its interaction with XRCC4. Furthermore, helix 1 and loop regions of the helix-loop-helix clamp provide secondary target surfaces to identify adjuvant compounds that could be used in combination to more efficiently inhibit XRCC4/Ligase IV complex formation and DNA repair.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Ligases/química , Proteínas de Ligação a DNA/química , Ligação Competitiva , DNA Ligase Dependente de ATP , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Fragmentos de Peptídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
15.
Anal Chem ; 82(23): 9850-7, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21067198

RESUMO

Protein-protein interactions are an intricate part of biological pathways and have become important targets for drug discovery. Here we present a two-stage magnetic bead assay to functionally screen small-molecule mixtures for modulators of protein-based interactions, with simultaneous affinity-based isolation of active compounds and identification by mass spectrometry. Proteins of interest interact in solution prior to the addition of Ni(II)-functionalized magnetic beads to recover an intact protein-protein complex through affinity capture of a polyhistidine-tagged primary target ("protein-complex fishing"). Protein-complex fishing, utilizing His(6)-tagged calmodulin (CaM) as the primary (bait) protein and melittin (Mel) as the target, was used to screen a mass-encoded library of 1000 bioactive compounds (50 mixtures, 20 compounds each) and successfully identified three known antagonists, three naturally occurring phenolic compounds previously reported to disrupt CaM-activated phosphodiesterase activity, and two newly identified modulators of the CaM-Mel interaction, methylbenzethonium and pempidine tartrate. The ability to produce quantitative inhibition data is also shown through the development of dose-dependent response curves and the determination of inhibition constants (K(I)) for the novel compound methylbenzethonium (K(I) = 14-49 nM) and two known antagonists, calmidazolium (K(I) = 1.7-7.5 nM) and trifluoperazine (K(I) = 1.2-3.0 µM), with the latter two values being in close agreement with literature values.


Assuntos
Calmodulina/antagonistas & inibidores , Magnetismo , Meliteno/antagonistas & inibidores , Mapeamento de Interação de Proteínas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Benzetônio/análogos & derivados , Benzetônio/química , Calmodulina/metabolismo , Histidina/química , Cinética , Meliteno/metabolismo , Níquel/química , Oligopeptídeos/química , Pempidina/química , Ligação Proteica , Trifluoperazina/química
16.
Anal Chem ; 81(21): 9055-64, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19788278

RESUMO

A reagentless bioactive paper-based solid-phase biosensor was developed for detection of acetylcholinesterase (AChE) inhibitors, including organophosphate pesticides. The assay strip is composed of a paper support (1 x 10 cm), onto which AChE and a chromogenic substrate, indophenyl acetate (IPA), were entrapped using biocompatible sol-gel derived silica inks in two different zones (e.g., sensing and substrate zones). The assay protocol involves first introducing the sample to the sensing zone via lateral flow of a pesticide-containing solution. Following an incubation period, the opposite end of the paper support is placed into distilled deionized water (ddH(2)O) to allow lateral flow in the opposite direction to move paper-bound IPA to the sensing area to initiate enzyme catalyzed hydrolysis of the substrate, causing a yellow-to-blue color change. The modified sensor is able to detect pesticides without the use of any external reagents with excellent detection limits (bendiocarb approximately 1 nM; carbaryl approximately 10 nM; paraoxon approximately 1 nM; malathion approximately 10 nM) and rapid response times (approximately 5 min). The sensor strip showed negligible matrix effects in detection of pesticides in spiked milk and apple juice samples. Bioactive paper-based assays on pesticide residues collected from food samples showed good agreement with a conventional mass spectrometric assay method. The bioactive paper assay should, therefore, be suitable for rapid screening of trace levels of organophosphate and carbamate pesticides in environmental and food samples.


Assuntos
Bebidas/análise , Técnicas Biossensoriais/métodos , Cromatografia em Papel/métodos , Contaminação de Alimentos/análise , Praguicidas/análise , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Carbamatos/análise , Inibidores da Colinesterase/análise , Compostos Organofosforados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA