Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Neuroinflammation ; 18(1): 63, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648543

RESUMO

BACKGROUND: Synthetic cathinones are a category of psychostimulants belonging to the growing number of designer drugs also known as "Novel Psychoactive Substances" (NPS). In recent years, NPS have gained popularity in the recreational drug market due to their amphetamine-like stimulant effects, low cost, ease of availability, and lack of detection by conventional toxicology screening. All these factors have led to an increase in NPS substance abuse among the young adults, followed by spike of overdose-related fatalities and adverse effects, severe neurotoxicity, and cerebral vascular complications. Much remains unknown about how synthetic cathinones negatively affect the CNS and the status of the blood-brain barrier (BBB). METHODS: We used in vitro models of the BBB and primary human brain microvascular endothelial cells (hBMVEC) to investigate the effects of the synthetic cathinone, 4-methyl methcathinone (mephedrone), on BBB properties. RESULTS: We showed that mephedrone exposure resulted in the loss of barrier properties and endothelial dysfunction of primary hBMVEC. Increased permeability and decreased transendothelial electrical resistance of the endothelial barrier were attributed to changes in key proteins involved in the tight junction formation. Elevated expression of matrix metalloproteinases, angiogenic growth factors, and inflammatory cytokines can be explained by TLR-4-dependent activation of NF-κB signaling. CONCLUSIONS: In this first characterization of the effects of a synthetic cathinone on human brain endothelial cells, it appears clear that mephedrone-induced damage of the BBB is not limited by the disruption of the barrier properties but also include endothelial activation and inflammation. This may especially be important in comorbid situations of mephedrone abuse and HIV-1 infections. In this context, mephedrone could negatively affect HIV-1 neuroinvasion and NeuroAIDS progression.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Drogas Desenhadas/farmacologia , Células Endoteliais/efeitos dos fármacos , Metanfetamina/análogos & derivados , Psicotrópicos/farmacologia , Células Cultivadas , Humanos , Metanfetamina/farmacologia
2.
Am J Pathol ; 191(2): 243-255, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285126

RESUMO

Electronic nicotine delivery systems (often known as e-cigarettes) are a novel tobacco product with growing popularity, particularly among younger demographics. The implications for public health are twofold, as these products may represent a novel source of tobacco-associated disease but may also provide a harm reduction strategy for current tobacco users. There is increasing recognition that e-cigarettes impact vascular function across multiple organ systems. Herein, we provide a comparison of evidence regarding the role of e-cigarettes versus combustible tobacco in vascular disease and implications for blood-brain barrier dysfunction and cognitive decline. Multiple non-nicotinic components of tobacco smoke have been identified in e-cigarette aerosol, and their involvement in vascular disease is discussed. In addition, nicotine and nicotinic signaling may modulate peripheral immune and endothelial cell populations in a highly context-dependent manner. Direct preclinical evidence for electronic nicotine delivery system-associated neurovascular impairment is provided, and a model is proposed in which non-nicotinic elements exert a proinflammatory effect that is functionally antagonized by the presence of nicotine.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Sistemas Eletrônicos de Liberação de Nicotina , Vaping/efeitos adversos , Animais , Humanos , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Produtos do Tabaco/efeitos adversos
3.
Neurobiol Dis ; 146: 105131, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053430

RESUMO

As researchers across the globe have focused their attention on understanding SARS-CoV-2, the picture that is emerging is that of a virus that has serious effects on the vasculature in multiple organ systems including the cerebral vasculature. Observed effects on the central nervous system include neurological symptoms (headache, nausea, dizziness), fatal microclot formation and in rare cases encephalitis. However, our understanding of how the virus causes these mild to severe neurological symptoms and how the cerebral vasculature is impacted remains unclear. Thus, the results presented in this report explored whether deleterious outcomes from the SARS-CoV-2 viral spike protein on primary human brain microvascular endothelial cells (hBMVECs) could be observed. The spike protein, which plays a key role in receptor recognition, is formed by the S1 subunit containing a receptor binding domain (RBD) and the S2 subunit. First, using postmortem brain tissue, we show that the angiotensin converting enzyme 2 or ACE2 (a known binding target for the SARS-CoV-2 spike protein), is ubiquitously expressed throughout various vessel calibers in the frontal cortex. Moreover, ACE2 expression was upregulated in cases of hypertension and dementia. ACE2 was also detectable in primary hBMVECs maintained under cell culture conditions. Analysis of cell viability revealed that neither the S1, S2 or a truncated form of the S1 containing only the RBD had minimal effects on hBMVEC viability within a 48 h exposure window. Introduction of spike proteins to invitro models of the blood-brain barrier (BBB) showed significant changes to barrier properties. Key to our findings is the demonstration that S1 promotes loss of barrier integrity in an advanced 3D microfluidic model of the human BBB, a platform that more closely resembles the physiological conditions at this CNS interface. Evidence provided suggests that the SARS-CoV-2 spike proteins trigger a pro-inflammatory response on brain endothelial cells that may contribute to an altered state of BBB function. Together, these results are the first to show the direct impact that the SARS-CoV-2 spike protein could have on brain endothelial cells; thereby offering a plausible explanation for the neurological consequences seen in COVID-19 patients.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , COVID-19 , Permeabilidade Capilar/efeitos dos fármacos , Moléculas de Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Demência/metabolismo , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Lobo Frontal/metabolismo , Humanos , Hipertensão/metabolismo , Técnicas In Vitro , Junções Intercelulares/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Dispositivos Lab-On-A-Chip , Metaloproteinases da Matriz/efeitos dos fármacos , Cultura Primária de Células , Domínios Proteicos , Subunidades Proteicas/metabolismo , Subunidades Proteicas/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Glicoproteína da Espícula de Coronavírus/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA