Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Anal Chem ; 96(11): 4455-4462, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38458998

RESUMO

The functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra. By using the charge-detection method called individual ion mass spectrometry, we demonstrate how complex mixtures of phosphoproteoforms and their fragment ions can be reproducibly handled to provide a "bird's eye" view of signaling activity through mapping proteoform landscapes in a pathway. Using this approach, the overall stoichiometry and distribution of 0-4 phosphorylations on MEK1 was determined in a cellular model of drug-resistant metastatic melanoma. This approach can be generalized to other multiply modified proteoforms, for which PTM combinations are key to their function and drug action.


Assuntos
Mitógenos , Proteínas Quinases , Espectrometria de Massas em Tandem/métodos , Processamento de Proteína Pós-Traducional , Peptídeos e Proteínas de Sinalização Intercelular , Íons
2.
Nat Commun ; 15(1): 1813, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418820

RESUMO

Widespread adoption of mirror-image biological systems presents difficulties in accessing the requisite D-protein substrates. In particular, mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders with potentially unique recognition modes but is hindered by the individualized optimization required for D-protein chemical synthesis. We demonstrate a general mirror-image phage display pipeline that utilizes automated flow peptide synthesis to prepare D-proteins in a single run. With this approach, we prepare and characterize 12 D-proteins - almost one third of all reported D-proteins to date. With access to mirror-image protein targets, we describe the successful discovery of six macrocyclic D-peptide binders: three to the oncoprotein MDM2, and three to the E3 ubiquitin ligase CHIP. Reliable production of mirror-image proteins can unlock the full potential of D-peptide drug discovery and streamline the study of mirror-image biology more broadly.


Assuntos
Peptídeos , Proteínas , Ligantes , Descoberta de Drogas
4.
Nat Commun ; 14(1): 6992, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914719

RESUMO

Molecules that induce novel interactions between proteins hold great promise for the study of biological systems and the development of therapeutics, but their discovery has been limited by the complexities of rationally designing interactions between three components, and because known binders to each protein are typically required to inform initial designs. Here, we report a general and rapid method for discovering α-helically constrained (Helicon) polypeptides that cooperatively induce the interaction between two target proteins without relying on previously known binders or an intrinsic affinity between the proteins. We show that Helicons are capable of binding every major class of E3 ubiquitin ligases, which are of great biological and therapeutic interest but remain largely intractable to targeting by small molecules. We then describe a phage-based screening method for discovering "trimerizer" Helicons, and apply it to reprogram E3s to cooperatively bind an enzyme (PPIA), a transcription factor (TEAD4), and a transcriptional coactivator (ß-catenin).


Assuntos
Peptídeos , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Peptídeos/metabolismo , Ubiquitinação
5.
J Am Soc Mass Spectrom ; 34(12): 2625-2629, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38011219

RESUMO

Collision cross section (CCS) measurements determined by ion mobility spectrometry (IMS) provide useful information about gas-phase protein structure that is complementary to mass analysis. Methods for determining CCS without a dedicated IMS system have been developed for Fourier transform mass spectrometry (FT-MS) platforms by measuring the signal decay during detection. Individual ion mass spectrometry (I2MS) provides charge detection and measures ion lifetimes across the length of an FT-MS detection event. By tracking lifetimes for entire ion populations, we demonstrate simultaneous determination of charge, mass, and CCS for proteins and complexes ranging from ∼8 to ∼232 kDa.


Assuntos
Espectrometria de Mobilidade Iônica , Proteínas , Espectrometria de Massas/métodos , Proteínas/química , Espectrometria de Mobilidade Iônica/métodos
6.
Nat Commun ; 14(1): 6478, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838706

RESUMO

The molecular identification of tissue proteoforms by top-down mass spectrometry (TDMS) is significantly limited by throughput and dynamic range. We introduce AutoPiMS, a single-ion MS based multiplexed workflow for top-down tandem MS (MS2) directly from tissue microenvironments in a semi-automated manner. AutoPiMS directly off human ovarian cancer sections allowed for MS2 identification of 73 proteoforms up to 54 kDa at a rate of <1 min per proteoform. AutoPiMS is directly interfaced with multifaceted proteoform imaging MS data modalities for the identification of proteoform signatures in tumor and stromal regions in ovarian cancer biopsies. From a total of ~1000 proteoforms detected by region-of-interest label-free quantitation, we discover 303 differential proteoforms in stroma versus tumor from the same patient. 14 of the top proteoform signatures are corroborated by MSI at 20 micron resolution including the differential localization of methylated forms of CRIP1, indicating the importance of proteoform-enabled spatial biology in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Proteoma , Humanos , Feminino , Proteoma/análise , Neoplasias Ovarianas/diagnóstico por imagem , Espectrometria de Massas em Tandem/métodos , Software , Microambiente Tumoral
7.
J Am Soc Mass Spectrom ; 34(10): 2093-2097, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37683262

RESUMO

Antibody-antigen interactions are central to the immune response. Variation of protein antigens such as isoforms and post-translational modifications can alter their antibody binding sites. To directly connect the recognition of protein antigens with their molecular composition, we probed antibody-antigen complexes by using native tandem mass spectrometry. Specifically, we characterized the prominent peanut allergen Ara h 2 and a convergent IgE variable region discovered in patients who are allergic to peanuts. In addition to measuring the antigen-induced dimerization of IgE antibodies, we demonstrated how immunocomplexes can be isolated in the gas phase and activated to eject, identify, and characterize proteoforms of their bound antigens. Using tandem experiments, we isolated the ejected antigens and then fragmented them to identify their chemical composition. These results establish native top-down mass spectrometry as a viable platform for precise and thorough characterization of immunocomplexes to relate structure to function and enable the discovery of antigen proteoforms and their binding sites.


Assuntos
Alérgenos , Espectrometria de Massas em Tandem , Humanos , Isoformas de Proteínas , Imunoglobulina E/metabolismo , Antígenos de Plantas/metabolismo
8.
Air Med J ; 42(2): 110-118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36958874

RESUMO

Upper gastrointestinal bleeding is a relatively common and life-threatening condition encountered by critical care transport crews. It is of paramount importance that transport crews understand the underlying pathophysiology of variceal and nonvariceal gastrointestinal bleeding as well as the nuanced management of this patient population. This article reviews the current clinical evidence on initial resuscitation, medical management, and advanced invasive therapies (such as balloon tamponade devices) that transport crews should be familiar with to manage these patients. In addition, we present a novel method of continuous balloon pressure monitoring of balloon tamponade devices that is applicable to the transport environment.


Assuntos
Cuidados Críticos , Hemorragia Gastrointestinal , Humanos , Hemorragia Gastrointestinal/terapia , Hemorragia Gastrointestinal/epidemiologia , Doença Aguda , Ressuscitação
9.
Proc Natl Acad Sci U S A ; 119(52): e2210435119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534810

RESUMO

The α-helix is one of the most common protein surface recognition motifs found in nature, and its unique amide-cloaking properties also enable α-helical polypeptide motifs to exist in membranes. Together, these properties have inspired the development of α-helically constrained (Helicon) therapeutics that can enter cells and bind targets that have been considered "undruggable", such as protein-protein interactions. To date, no general method for discovering α-helical binders to proteins has been reported, limiting Helicon drug discovery to only those proteins with previously characterized α-helix recognition sites, and restricting the starting chemical matter to those known α-helical binders. Here, we report a general and rapid screening method to empirically map the α-helix binding sites on a broad range of target proteins in parallel using large, unbiased Helicon phage display libraries and next-generation sequencing. We apply this method to screen six structurally diverse protein domains, only one of which had been previously reported to bind isolated α-helical peptides, discovering 20 families that collectively comprise several hundred individual Helicons. Analysis of 14 X-ray cocrystal structures reveals at least nine distinct α-helix recognition sites across these six proteins, and biochemical and biophysical studies show that these Helicons can block protein-protein interactions, inhibit enzymatic activity, induce conformational rearrangements, and cause protein dimerization. We anticipate that this method will prove broadly useful for the study of protein recognition and for the development of both biochemical tools and therapeutics for traditionally challenging protein targets.


Assuntos
Amidas , Peptídeos , Conformação Proteica em alfa-Hélice , Sítios de Ligação , Peptídeos/química , Biblioteca de Peptídeos
10.
Anal Chem ; 94(48): 16543-16548, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36416365

RESUMO

Charge detection mass spectrometry (CDMS) provides mass domain spectra of large and highly heterogeneous analytes. Over the past few years, we have multiplexed CDMS on Orbitrap instruments, an approach termed Individual Ion Mass Spectrometry (I2MS). Until now, I2MS required manual adjustment of injection times to collect spectra in the individual ion regime. To increase sample adaptability, enable online separations, and reduce the barrier for entry, we report an automated method for adjusting ion injection times in I2MS for image current detectors like the Orbitrap. Automatic Ion Control (AIC) utilizes the density of signals in the m/z domain to adjust an ensemble of ions down to the individual ion regime in real-time. The AIC technique was applied to both denatured and native proteins yielding high quality data without human intervention directly in the mass domain.


Assuntos
Proteínas , Humanos , Espectrometria de Massas/métodos , Íons/química , Proteínas/análise
11.
Sci Adv ; 8(32): eabp9929, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947651

RESUMO

Imaging of proteoforms in human tissues is hindered by low molecular specificity and limited proteome coverage. Here, we introduce proteoform imaging mass spectrometry (PiMS), which increases the size limit for proteoform detection and identification by fourfold compared to reported methods and reveals tissue localization of proteoforms at <80-µm spatial resolution. PiMS advances proteoform imaging by combining ambient nanospray desorption electrospray ionization with ion detection using individual ion mass spectrometry. We demonstrate highly multiplexed proteoform imaging of human kidney, annotating 169 of 400 proteoforms of <70 kDa using top-down MS and a database lookup of ~1000 kidney candidate proteoforms, including dozens of key enzymes in primary metabolism. PiMS images reveal distinct spatial localizations of proteoforms to both anatomical structures and cellular neighborhoods in the vasculature, medulla, and cortex regions of the human kidney. The benefits of PiMS are poised to increase proteome coverage for label-free protein imaging of tissues.

12.
Acc Chem Res ; 55(14): 1928-1937, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35749283

RESUMO

Biology is driven by a vast set of molecular interactions that evolved over billions of years. Just as covalent modifications like acetylations and phosphorylations can change a protein's function, so too can noncovalent interactions with metals, small molecules, and other proteins. However, much of the language of protein-level biology is left either undiscovered or inferred, as traditional methods used in the field of proteomics use conditions that dissociate noncovalent interactions and denature proteins.Just in the past few years, mass spectrometry (MS) has evolved the capacity to preserve and subsequently characterize the complete composition of endogenous protein complexes. Using this "native" type of mass spectrometry, a complex can be activated to liberate some or all of its subunits, typically via collisions with neutral gas or solid surfaces and isolated before further characterization ("Native Top-Down MS," or nTDMS). The subunit mass, the parent ion mass, and the fragment ions of the activated subunits can be used to piece together the precise molecular composition of the parent complex. When performed en masse in discovery mode (i.e., "native proteomics"), the interactions of life─including protein modifications─will eventually be clarified and linked to dysfunction in human disease states.In this Account, we describe the current and future components of the native MS toolkit, covering the challenges the field faces to characterize ever larger bioassemblies. Each of the three pillars of native proteomics are addressed: (i) separations, (ii) top-down mass spectrometry, and (iii) integration with structural biology. Complexes such as endogenous nucleosomes can be targeted now using nTDMS, whereas virus particles, exosomes, and high-density lipoprotein particles will be tackled in the coming few years. The future work to adequately address the size and complexity of mega- to gigadalton complexes will include native separations, single ion mass spectrometry, and new data types. The use of nTDMS in discovery mode will incorporate native-compatible separation techniques to maximize the number of proteoforms in complexes identified. With a new wave of innovations, both targeted and discovery mode nTDMS will expand to include extremely scarce and exceedingly heterogeneous bioassemblies. Understanding the proteinaceous interactions of life and how they go wrong (e.g., misfolding, forming complexes in dysfunctional stoichiometries and configurations) will not only inform the development of life-restoring therapeutics but also deepen our understanding of life at the molecular level.


Assuntos
Proteínas , Proteômica , Humanos , Íons , Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos
13.
MMWR Morb Mortal Wkly Rep ; 71(9): 341-346, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238860

RESUMO

The B.1.1.529 (Omicron) variant, first detected in November 2021, was responsible for a surge in U.S. infections with SARS-CoV-2, the virus that causes COVID-19, during December 2021-January 2022 (1). To investigate the effectiveness of prevention strategies in household settings, CDC partnered with four U.S. jurisdictions to describe Omicron household transmission during November 2021-February 2022. Persons with sequence-confirmed Omicron infection and their household contacts were interviewed. Omicron transmission occurred in 124 (67.8%) of 183 households. Among 431 household contacts, 227 were classified as having a case of COVID-19 (attack rate [AR] = 52.7%).† The ARs among household contacts of index patients who had received a COVID-19 booster dose, of fully vaccinated index patients who completed their COVID-19 primary series within the previous 5 months, and of unvaccinated index patients were 42.7% (47 of 110), 43.6% (17 of 39), and 63.9% (69 of 108), respectively. The AR was lower among household contacts of index patients who isolated (41.2%, 99 of 240) compared with those of index patients who did not isolate (67.5%, 112 of 166) (p-value <0.01). Similarly, the AR was lower among household contacts of index patients who ever wore a mask at home during their potentially infectious period (39.5%, 88 of 223) compared with those of index patients who never wore a mask at home (68.9%, 124 of 180) (p-value <0.01). Multicomponent COVID-19 prevention strategies, including up-to-date vaccination, isolation of infected persons, and mask use at home, are critical to reducing Omicron transmission in household settings.


Assuntos
COVID-19/transmissão , SARS-CoV-2 , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , Criança , Pré-Escolar , Busca de Comunicante , Características da Família , Feminino , Humanos , Incidência , Lactente , Masculino , Pessoa de Meia-Idade , Intervalo Serial de Infecção , Estados Unidos/epidemiologia , Vacinação
14.
J Proteome Res ; 21(1): 274-288, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34878788

RESUMO

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multiparametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We applied Ig-MS to plasma from subjects with severe and mild COVID-19 and immunized subjects after two vaccine doses, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, that could use other antigens of interest to gauge immune responses to vaccination, pathogens, or autoimmune disorders.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Espectrometria de Massas , Glicoproteína da Espícula de Coronavírus/genética
15.
Int J Mass Spectrom ; 4652021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34539228

RESUMO

The combined use of electrospray ionization run in so-called "native mode" with top-down mass spectrometry (nTDMS) is enhancing both structural biology and discovery proteomics by providing three levels of information in a single experiment: the intact mass of a protein or complex, the masses of its subunits and non-covalent cofactors, and fragment ion masses from direct dissociation of subunits that capture the primary sequence and combinations of diverse post-translational modifications (PTMs). While intact mass data are readily deconvoluted using well-known software options, the analysis of fragmentation data that result from a tandem MS experiment - essential for proteoform characterization - is not yet standardized. In this tutorial, we offer a decision-tree for the analysis of nTDMS experiments on protein complexes and diverse bioassemblies. We include an overview of strategies to navigate this type of analysis, provide example data sets, and highlight software for the hypothesis-driven interrogation of fragment ions for localization of PTMs, metals, and cofactors on native proteoforms. Throughout we have emphasized the key features (deconvolution, search mode, validation, other) that the reader can consider when deciding upon their specific experimental and data processing design using both open-access and commercial software.

16.
medRxiv ; 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34268518

RESUMO

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS , a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multi-parametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We apply Ig-MS to plasma from subjects with severe & mild COVID-19, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, with compatibility to any recombinant antigen to gauge our immune responses to vaccination, pathogens, or autoimmune disorders.

17.
Anal Chem ; 93(16): 6323-6328, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33844503

RESUMO

Field asymmetric ion mobility spectrometry (FAIMS), when used in proteomics studies, provides superior selectivity and enables more proteins to be identified by providing additional gas-phase separation. Here, we tested the performance of cylindrical FAIMS for the identification and characterization of proteoforms by top-down mass spectrometry of heterogeneous protein mixtures. Combining FAIMS with chromatographic separation resulted in a 62% increase in protein identifications, an 8% increase in proteoform identifications, and an improvement in proteoform identification compared to samples analyzed without FAIMS. In addition, utilization of FAIMS resulted in the identification of proteins encoded by lower-abundance mRNA transcripts. These improvements were attributable, in part, to improved signal-to-noise for proteoforms with similar retention times. Additionally, our results show that the optimal compensation voltage of any given proteoform was correlated with the molecular weight of the analyte. Collectively these results suggest that the addition of FAIMS can enhance top-down proteomics in both discovery and targeted applications.


Assuntos
Espectrometria de Mobilidade Iônica , Proteômica , Espectrometria de Massas , Proteínas
18.
Electrophoresis ; 42(9-10): 1050-1059, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33502026

RESUMO

Native mass spectrometry (nMS) is a rapidly growing method for the characterization of large proteins and protein complexes, preserving "native" non-covalent inter- and intramolecular interactions. Direct infusion of purified analytes into a mass spectrometer represents the standard approach for conducting nMS experiments. Alternatively, CZE can be performed under native conditions, providing high separation performance while consuming trace amounts of sample material. Here, we provide standard operating procedures for acquiring high-quality data using CZE in native mode coupled online to various Orbitrap mass spectrometers via a commercial sheathless interface, covering a wide range of analytes from 30-800 kDa. Using a standard protein mix, the influence of various CZE method parameters were evaluated, such as BGE/conductive liquid composition and separation voltage. Additionally, a universal approach for the optimization of fragmentation settings in the context of protein subunit and metalloenzyme characterization is discussed in detail for model analytes. A short section is dedicated to troubleshooting of the nCZE-MS setup. This study is aimed to help normalize nCZE-MS practices to enhance the CE community and provide a resource for the production of reproducible and high-quality data.


Assuntos
Espectrometria de Massas , Eletroforese Capilar , Proteínas , Espectrometria de Massas por Ionização por Electrospray
19.
Anal Chem ; 93(5): 2723-2727, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33322893

RESUMO

Native mass spectrometry involves transferring large biomolecular complexes into the gas phase, enabling the characterization of their composition and stoichiometry. However, the overlap in distributions created by residual solvation, ionic adducts, and post-translational modifications creates a high degree of complexity that typically goes unresolved at masses above ∼150 kDa. Therefore, native mass spectrometry would greatly benefit from higher resolution approaches for intact proteins and their complexes. By recording mass spectra of individual ions via charge detection mass spectrometry, we report isotopic resolution for pyruvate kinase (232 kDa) and ß-galactosidase (466 kDa), extending the limits of isotopic resolution for high mass and high m/z by >2.5-fold and >1.6-fold, respectively.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Íons , Espectrometria de Massas
20.
Clin Chem Lab Med ; 59(4): 653-661, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33079696

RESUMO

OBJECTIVES: Multiple myeloma (MM) is a malignant plasma cell neoplasm, requiring the integration of clinical examination, laboratory and radiological investigations for diagnosis. Detection and isotypic identification of the monoclonal protein(s) and measurement of other relevant biomarkers in serum and urine are pivotal analyses. However, occasionally this approach fails to characterize complex protein signatures. Here we describe the development and application of next generation mass spectrometry (MS) techniques, and a novel adaptation of immunofixation, to interrogate non-canonical monoclonal immunoproteins. METHODS: Immunoprecipitation immunofixation (IP-IFE) was performed on a Sebia Hydrasys Scan2. Middle-down de novo sequencing and native MS were performed with multiple instruments (21T FT-ICR, Q Exactive HF, Orbitrap Fusion Lumos, and Orbitrap Eclipse). Post-acquisition data analysis was performed using Xcalibur Qual Browser, ProSight Lite, and TDValidator. RESULTS: We adapted a novel variation of immunofixation electrophoresis (IFE) with an antibody-specific immunosubtraction step, providing insight into the clonal signature of gamma-zone monoclonal immunoglobulin (M-protein) species. We developed and applied advanced mass spectrometric techniques such as middle-down de novo sequencing to attain in-depth characterization of the primary sequence of an M-protein. Quaternary structures of M-proteins were elucidated by native MS, revealing a previously unprecedented non-covalently associated hetero-tetrameric immunoglobulin. CONCLUSIONS: Next generation proteomic solutions offer great potential for characterizing complex protein structures and may eventually replace current electrophoretic approaches for the identification and quantification of M-proteins. They can also contribute to greater understanding of MM pathogenesis, enabling classification of patients into new subtypes, improved risk stratification and the potential to inform decisions on future personalized treatment modalities.


Assuntos
Mieloma Múltiplo , Proteínas do Mieloma , Proteômica/métodos , Anticorpos Monoclonais , Humanos , Imunoeletroforese , Espectrometria de Massas , Mieloma Múltiplo/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA