Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Nutrients ; 16(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39339738

RESUMO

Cyclic weight loss and subsequent regain after dieting and non-dieting periods, a phenomenon termed yoyo dieting, places individuals at greater risk of metabolic complications and alters gut microbiome composition. Resistant starch (RS) improves gut health and systemic metabolism. This study aimed to investigate the effect of yoyo dieting and RS on the metabolism and gut microbiome. C57BL/6 mice were assigned to 6 diets for 20 weeks, including control, high fat (HF), yoyo (alternating HF and control diets every 5 weeks), control with RS, HF with RS, and yoyo with RS. Metabolic outcomes and microbiota profiling using 16S rRNA sequencing were examined. Yoyo dieting resulted in short-term weight loss, which led to improved liver health and insulin tolerance but also a greater rate of weight gain compared to continuous HF feeding, as well as a different microbiota profile that was in an intermediate configuration between the control and HF states. Mice fed HF and yoyo diets supplemented with RS gained less weight than those fed without RS. RS supplementation in yoyo mice appeared to shift the gut microbiota composition closer to the control state. In conclusion, yoyo dieting leads to obesity relapse, and increased RS intake reduces weight gain and might help prevent rapid weight regain via gut microbiome restoration.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Amido Resistente , Redução de Peso , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos , Amido Resistente/farmacologia , Obesidade/microbiologia , RNA Ribossômico 16S , Amido/farmacologia , Amido/administração & dosagem , Aumento de Peso/efeitos dos fármacos , Dieta/métodos
2.
Nutrients ; 16(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339770

RESUMO

Excessive body weight is associated with many chronic metabolic diseases and weight loss, so far, remains the gold standard treatment. However, despite tremendous efforts exploring optimal treatments for obesity, many individuals find losing weight and maintaining a healthy body weight difficult. Weight loss is often not sustainable resulting in weight regain and subsequent efforts to lose weight. This cyclic pattern of weight loss and regain is termed "yoyo dieting" and predisposes individuals to obesity and metabolic comorbidities. How yoyo dieting might worsen obesity complications during the weight recurrence phase remains unclear. In particular, there is limited data on the role of the gut microbiome in yoyo dieting. Gut health distress, especially gut inflammation and microbiome perturbation, is strongly associated with metabolic dysfunction and disturbance of energy homeostasis in obesity. In this review, we summarise current evidence of the crosstalk between the gastrointestinal system and energy balance, and the effects of yoyo dieting on gut inflammation and gut microbiota reshaping. Finally, we focus on the potential effects of post-dieting weight loss in improving gut health and identify current knowledge gaps within the field, including gut-derived peptide hormones and their potential suitability as targets to combat weight regain, and how yoyo dieting and associated changes in the microbiome affect the gut barrier and the enteric nervous system, which largely remain to be determined.


Assuntos
Microbioma Gastrointestinal , Obesidade , Redução de Peso , Humanos , Microbioma Gastrointestinal/fisiologia , Obesidade/microbiologia , Metabolismo Energético , Dieta Redutora , Inflamação , Trato Gastrointestinal/microbiologia , Aumento de Peso
3.
Free Radic Biol Med ; 224: 479-483, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243828

RESUMO

The glucose transporter GLUT4 is integral for optimal skeletal muscle performance during exercise, as well as for metabolic health. Physiological regulation of GLUT4 translocation during exercise and increased GLUT4 expression following exercise involves multiple, redundant signalling pathways. These include effects of reactive oxygen species (ROS). ROS contribute to GLUT4 translocation that increases skeletal muscle glucose uptake during exercise and stimulate signalling pathways that increase GLUT4 expression. Conversely, ROS can also inhibit GLUT4 translocation and expression in metabolic disease states. The opposing roles of ROS in GLUT4 regulation are ultimately linked to the metabolic state of skeletal muscle and the intricate mechanisms involved give insights into pathways critical for exercise performance and implicated in metabolic health and disease.

4.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119814, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128598

RESUMO

Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.


Assuntos
Obesidade , Proteína Quinase C , Humanos , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Animais , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia
5.
bioRxiv ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39149261

RESUMO

Using five complementary short- and long-read sequencing technologies, we phased and assembled >95% of each diploid human genome in a four-generation, 28-member family (CEPH 1463) allowing us to systematically assess de novo mutations (DNMs) and recombination. From this family, we estimate an average of 192 DNMs per generation, including 75.5 de novo single-nucleotide variants (SNVs), 7.4 non-tandem repeat indels, 79.6 de novo indels or structural variants (SVs) originating from tandem repeats, 7.7 centromeric de novo SVs and SNVs, and 12.4 de novo Y chromosome events per generation. STRs and VNTRs are the most mutable with 32 loci exhibiting recurrent mutation through the generations. We accurately assemble 288 centromeres and six Y chromosomes across the generations, documenting de novo SVs, and demonstrate that the DNM rate varies by an order of magnitude depending on repeat content, length, and sequence identity. We show a strong paternal bias (75-81%) for all forms of germline DNM, yet we estimate that 17% of de novo SNVs are postzygotic in origin with no paternal bias. We place all this variation in the context of a high-resolution recombination map (~3.5 kbp breakpoint resolution). We observe a strong maternal recombination bias (1.36 maternal:paternal ratio) with a consistent reduction in the number of crossovers with increasing paternal (r=0.85) and maternal (r=0.65) age. However, we observe no correlation between meiotic crossover locations and de novo SVs, arguing against non-allelic homologous recombination as a predominant mechanism. The use of multiple orthogonal technologies, near-telomere-to-telomere phased genome assemblies, and a multi-generation family to assess transmission has created the most comprehensive, publicly available "truth set" of all classes of genomic variants. The resource can be used to test and benchmark new algorithms and technologies to understand the most fundamental processes underlying human genetic variation.

6.
medRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38946996

RESUMO

Pharmacogenomics promises improved outcomes through individualized prescribing. However, the lack of diversity in studies impedes clinical translation and equitable application of precision medicine. We evaluated the frequencies of PGx variants, predicted phenotypes, and medication exposures using whole genome sequencing and EHR data from nearly 100k diverse All of Us Research Program participants. We report 100% of participants carried at least one pharmacogenomics variant and nearly all (99.13%) had a predicted phenotype with prescribing recommendations. Clinical impact was high with over 20% having both an actionable phenotype and a prior exposure to an impacted medication with pharmacogenomic prescribing guidance. Importantly, we also report hundreds of alleles and predicted phenotypes that deviate from known frequencies and/or were previously unreported, including within admixed American and African ancestry groups.

8.
Commun Biol ; 7(1): 174, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374434

RESUMO

Disparities in data underlying clinical genomic interpretation is an acknowledged problem, but there is a paucity of data demonstrating it. The All of Us Research Program is collecting data including whole-genome sequences, health records, and surveys for at least a million participants with diverse ancestry and access to healthcare, representing one of the largest biomedical research repositories of its kind. Here, we examine pathogenic and likely pathogenic variants that were identified in the All of Us cohort. The European ancestry subgroup showed the highest overall rate of pathogenic variation, with 2.26% of participants having a pathogenic variant. Other ancestry groups had lower rates of pathogenic variation, including 1.62% for the African ancestry group and 1.32% in the Latino/Admixed American ancestry group. Pathogenic variants were most frequently observed in genes related to Breast/Ovarian Cancer or Hypercholesterolemia. Variant frequencies in many genes were consistent with the data from the public gnomAD database, with some notable exceptions resolved using gnomAD subsets. Differences in pathogenic variant frequency observed between ancestral groups generally indicate biases of ascertainment of knowledge about those variants, but some deviations may be indicative of differences in disease prevalence. This work will allow targeted precision medicine efforts at revealed disparities.


Assuntos
Predisposição Genética para Doença , Saúde da População , Humanos , População Negra , Genômica , Hispânico ou Latino/genética , Estados Unidos/epidemiologia , População Europeia , População Africana , Negro ou Afro-Americano
9.
Nat Commun ; 15(1): 258, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225272

RESUMO

There are epidemiological associations between obesity and type 2 diabetes, cardiovascular disease and Alzheimer's disease. The role of amyloid beta 42 (Aß42) in these diverse chronic diseases is obscure. Here we show that adipose tissue releases Aß42, which is increased from adipose tissue of male mice with obesity and is associated with higher plasma Aß42. Increasing circulating Aß42 levels in male mice without obesity has no effect on systemic glucose homeostasis but has obesity-like effects on the heart, including reduced cardiac glucose clearance and impaired cardiac function. The closely related Aß40 isoform does not have these same effects on the heart. Administration of an Aß-neutralising antibody prevents obesity-induced cardiac dysfunction and hypertrophy. Furthermore, Aß-neutralising antibody administration in established obesity prevents further deterioration of cardiac function. Multi-contrast transcriptomic analyses reveal that Aß42 impacts pathways of mitochondrial metabolism and exposure of cardiomyocytes to Aß42 inhibits mitochondrial complex I. These data reveal a role for systemic Aß42 in the development of cardiac disease in obesity and suggest that therapeutics designed for Alzheimer's disease could be effective in combating obesity-induced heart failure.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Peptídeos beta-Amiloides , Diabetes Mellitus Tipo 2/complicações , Anticorpos Neutralizantes , Obesidade/complicações , Glucose , Fragmentos de Peptídeos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38072867

RESUMO

Schizophrenia (SCZ) is a complex neuropsychiatric disorder associated with altered bioenergetic pathways and mitochondrial dysfunction. Antipsychotic medications, both first and second-generation, are commonly prescribed to manage SCZ symptoms, but their direct impact on mitochondrial function remains poorly understood. In this study, we investigated the effects of commonly prescribed antipsychotics on bioenergetic pathways in cultured neurons. We examined the impact of risperidone, aripiprazole, amisulpride, and clozapine on gene expression, mitochondrial bioenergetic profile, and targeted metabolomics after 24-h treatment, using RNA-seq, Seahorse XF24 Flux Analyser, and gas chromatography-mass spectrometry (GC-MS), respectively. Risperidone treatment reduced the expression of genes involved in oxidative phosphorylation, the tricarboxylic acid cycle, and glycolysis pathways, and it showed a tendency to decrease basal mitochondrial respiration. Aripiprazole led to dose-dependent reductions in various mitochondrial function parameters without significantly affecting gene expression. Aripiprazole, amisulpride and clozapine treatment showed an effect on the tricarboxylic acid cycle metabolism, leading to more abundant metabolite levels. Antipsychotic drug effects on mitochondrial function in SCZ are multifaceted. While some drugs have greater effects on gene expression, others appear to exert their effects through enzymatic post-translational or allosteric modification of enzymatic activity. Understanding these effects is crucial for optimising treatment strategies for SCZ. Novel therapeutic interventions targeting energy metabolism by post-transcriptional pathways might be more effective as these can more directly and efficiently regulate energy production.

11.
Cell Death Dis ; 14(12): 787, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040704

RESUMO

Lipotoxicity, the accumulation of lipids in non-adipose tissues, alters the metabolic transcriptome and mitochondrial metabolism in skeletal muscle. The mechanisms involved remain poorly understood. Here we show that lipotoxicity increased histone deacetylase 4 (HDAC4) and histone deacetylase 5 (HDAC5), which reduced the expression of metabolic genes and oxidative metabolism in skeletal muscle, resulting in increased non-oxidative glucose metabolism. This metabolic reprogramming was also associated with impaired apoptosis and ferroptosis responses, and preserved muscle cell viability in response to lipotoxicity. Mechanistically, increased HDAC4 and 5 decreased acetylation of p53 at K120, a modification required for transcriptional activation of apoptosis. Redox drivers of ferroptosis derived from oxidative metabolism were also reduced. The relevance of this pathway was demonstrated by overexpression of loss-of-function HDAC4 and HDAC5 mutants in skeletal muscle of obese db/db mice, which enhanced oxidative metabolic capacity, increased apoptosis and ferroptosis and reduced muscle mass. This study identifies HDAC4 and HDAC5 as repressors of skeletal muscle oxidative metabolism, which is linked to inhibition of cell death pathways and preservation of muscle integrity in response to lipotoxicity.


Assuntos
Histona Desacetilases , Células Musculares , Camundongos , Animais , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Processamento de Proteína Pós-Traducional , Morte Celular
12.
J Mol Endocrinol ; 71(4)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675942

RESUMO

A deficiency in hydrogen sulfide has been implicated in the development and progression of diabetic chronic kidney disease. The purpose of this study was to determine the effect of diabetes on the H2S system in early-stage diabetic kidney disease. We characterised gene and protein expression profile of the enzymes that regulate H2S production and degradation, and H2S production capacity, in the kidney from 10-week-old C57BL6Jdb/db mice (n = 6), in age-matched heterozygous controls (n = 7), and in primary endothelial cells (HUVECs) exposed to high glucose. In db/db mice, renal H2S levels were significantly reduced (P = 0.009). Protein expression of the H2S production enzymes was differentially affected by diabetes: cystathionine ß-synthase (CBS) was significantly lower in both db/db mice and high glucose-treated HUVECs (P < 0.0001; P = 0.0318) whereas 3-mercatopyruvate sulfurtransferase (3-MST) expression was higher in the db/db kidney (P < 0.0001), yet lower in the HUVECs (P = 0.0001). Diabetes had no effect on the expression of cystathionine γ-lyase (CSE) in the db/db kidney (P = ns) but was associated with reduced expression in the HUVECs (P = 0.0004). Protein expression of degradation enzyme sulfide quinone reductase (SQOR) was significantly higher in db/db kidney (P = 0.048) and lower in the high glucose-treated HUVECs (P = 0.008). Immunofluorescence studies revealed differential localisation of the H2S enzymes in the kidney, including both tubular and vascular localisation, suggestive of functionally distinct actions in the kidney. The results of this study provide foundational knowledge for future research looking at the H2S system in both kidney physiology and the aetiology of chronic diabetic kidney disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Sulfeto de Hidrogênio , Camundongos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Nefropatias Diabéticas/etiologia , Células Endoteliais/metabolismo , Rim/metabolismo , Glucose
13.
Syst Rev ; 12(1): 92, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37269003

RESUMO

BACKGROUND: Intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections play a key role in treating a range of macular diseases. The effectiveness of these therapies is dependent on patients' adherence (the extent to which a patient takes their medicines as per agreed recommendations from the healthcare provider) and persistence (continuation of the treatment for the prescribed duration) to their prescribed treatment regimens. The aim of this systematic review was to demonstrate the need for further investigation into the prevalence of, and factors contributing to, patient-led non-adherence and non-persistence, thus facilitating improved clinical outcomes. METHODS: Systematic searches were conducted in Google Scholar, Web of Science, PubMed, MEDLINE, and the Cochrane Library. Studies in English conducted before February 2023 that reported the level of, and/or barriers to, non-adherence or non-persistence to intravitreal anti-VEGF ocular disease therapy were included. Duplicate papers, literature reviews, expert opinion articles, case studies, and case series were excluded following screening by two independent authors. RESULTS: Data from a total of 409,215 patients across 52 studies were analysed. Treatment regimens included pro re nata, monthly and treat-and-extend protocols; study durations ranged from 4 months to 8 years. Of the 52 studies, 22 included a breakdown of reasons for patient non-adherence/non-persistence. Patient-led non-adherence varied between 17.5 and 35.0% depending on the definition used. Overall pooled prevalence of patient-led treatment non-persistence was 30.0% (P = 0.000). Reasons for non-adherence/non-persistence included dissatisfaction with treatment results (29.9%), financial burden (19%), older age/comorbidities (15.5%), difficulty booking appointments (8.5%), travel distance/social isolation (7.9%), lack of time (5.8%), satisfaction with the perceived improvement in their condition (4.4%), fear of injection (4.0%), loss of motivation (4.0%), apathy towards eyesight (2.5%), dissatisfaction with facilities 2.3%, and discomfort/pain (0.3%). Three studies found non-adherence rates between 51.6 and 68.8% during the COVID-19 pandemic, in part due to fear of exposure to COVID-19 and difficulties travelling during lockdown. DISCUSSION: Results suggest high levels of patient-led non-adherence/non-persistence to anti-VEGF therapy, mostly due to dissatisfaction with treatment results, a combination of comorbidities, loss of motivation and the burden of travel. This study provides key information on prevalence and factors contributing to non-adherence/non-persistence in anti-VEGF treatment for macular diseases, aiding identification of at-risk individuals to improve real-world visual outcomes. Improvements in the literature can be achieved by establishing uniform definitions and standard timescales for what constitutes non-adherence/non-persistence. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020216205.


Assuntos
Inibidores da Angiogênese , Oftalmopatias , Ranibizumab , Humanos , Inibidores da Angiogênese/uso terapêutico , Ranibizumab/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adesão à Medicação , Oftalmopatias/tratamento farmacológico
14.
Life (Basel) ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36983885

RESUMO

Development of OA (OA) is multifactorial and is strongly associated with risk factors such as aging, trauma, metabolic disorders, and obesity. Metabolic Syndrome (MetS)-associated OA, collectively coined MetS-OA, is an increasingly recognized entity in which metabolic disorders and low-grade inflammation play a key mechanistic role in the disruption of joint homeostasis and cartilage degradation. Although there have been enormous efforts to discover biomarkers of MetS and OA, studies investigating a pathophysiological link between MetS and OA are relatively limited, and no serum blood marker has proved diagnostic so far. OA biomarkers that are necessary to discriminate and diagnose early disease remain to be elicited, explained in part by limited prospective studies, and therefore limited tools available to utilize in any prognostic capacity. Biomarker validation projects have been established by the Biomarker Consortium to determine biochemical markers demonstrating predictive validity for knee OA. Given that the metabolic constituents of MetS are treatable to varying extents, it stands to reason that treating these, and monitoring such treatment, may help to mitigate deleterious links with OA development. This narrative review will describe the current state of biomarker identification and utility in OA associated with MetS. We discuss the pathophysiological mechanisms of disease according to constituent pathologies of MetS and how identification of biomarkers may guide future investigation of novel targets.

15.
Bipolar Disord ; 25(8): 661-670, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36890661

RESUMO

OBJECTIVES: The aim of this study was to repurpose a drug for the treatment of bipolar depression. METHODS: A gene expression signature representing the overall transcriptomic effects of a cocktail of drugs widely prescribed to treat bipolar disorder was generated using human neuronal-like (NT2-N) cells. A compound library of 960 approved, off-patent drugs were then screened to identify those drugs that affect transcription most similar to the effects of the bipolar depression drug cocktail. For mechanistic studies, peripheral blood mononuclear cells were obtained from a healthy subject and reprogrammed into induced pluripotent stem cells, which were then differentiated into co-cultured neurons and astrocytes. Efficacy studies were conducted in two animal models of depressive-like behaviours (Flinders Sensitive Line rats and social isolation with chronic restraint stress rats). RESULTS: The screen identified trimetazidine as a potential drug for repurposing. Trimetazidine alters metabolic processes to increase ATP production, which is thought to be deficient in bipolar depression. We showed that trimetazidine increased mitochondrial respiration in cultured human neuronal-like cells. Transcriptomic analysis in induced pluripotent stem cell-derived neuron/astrocyte co-cultures suggested additional mechanisms of action via the focal adhesion and MAPK signalling pathways. In two different rodent models of depressive-like behaviours, trimetazidine exhibited antidepressant-like activity with reduced anhedonia and reduced immobility in the forced swim test. CONCLUSION: Collectively our data support the repurposing of trimetazidine for the treatment of bipolar depression.


Assuntos
Transtorno Bipolar , Trimetazidina , Ratos , Humanos , Animais , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transcriptoma , Reposicionamento de Medicamentos , Leucócitos Mononucleares , Modelos Animais de Doenças
16.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806181

RESUMO

Altered protein synthesis has been implicated in the pathophysiology of several neuropsychiatric disorders, particularly schizophrenia. Ribosomes are the machinery responsible for protein synthesis. However, there remains little information on whether current psychotropic drugs affect ribosomes and contribute to their therapeutic effects. We treated human neuronal-like (NT2-N) cells with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM) or vehicle control for 24 h. Transcriptomic and gene set enrichment analysis (GSEA) identified that the ribosomal pathway was altered by these drugs. We found that three of the eight drugs tested significantly decreased ribosomal gene expression, whilst one increased it. Most changes were observed in the components of cytosolic ribosomes and not mitochondrial ribosomes. Protein synthesis assays revealed that aripiprazole, clozapine and lithium all decreased protein synthesis. Several currently prescribed psychotropic drugs seem to impact ribosomal gene expression and protein synthesis. This suggests the possibility of using protein synthesis inhibitors as novel therapeutic agents for neuropsychiatric disorders.


Assuntos
Antipsicóticos , Clozapina , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Aripiprazol , Benzodiazepinas/uso terapêutico , Clozapina/uso terapêutico , Humanos , Lítio , Olanzapina , Psicotrópicos/farmacologia , Psicotrópicos/uso terapêutico , Fumarato de Quetiapina , Ribossomos
17.
FASEB J ; 36(5): e22320, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470501

RESUMO

The cytokine-inducible SH2 domain containing protein (CISH) is the founding member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators and has been shown to be a physiological regulator of signaling in immune cells. This study sought to investigate novel functions for CISH outside of the immune system. Mice deficient in CISH were generated and analyzed using a range of metabolic and other parameters, including in response to a high fat diet and leptin administration. CISH knockout mice possessed decreased body fat and showed resistance to diet-induced obesity. This was associated with reduced food intake, but unaltered energy expenditure and microbiota composition. CISH ablation resulted in reduced basal expression of the orexigenic Agrp gene in the arcuate nucleus (ARC) region of the brain. Cish was basally expressed in the ARC, with evidence of co-expression with the leptin receptor (Lepr) gene in Agrp-positive neurons. CISH-deficient mice also showed enhanced leptin responsiveness, although Cish expression was not itself modulated by leptin. CISH-deficient mice additionally exhibited improved insulin sensitivity on a high-fat diet, but not glucose tolerance despite reduced body weight. These data identify CISH as an important regulator of homeostasis through impacts on appetite control, mediated at least in part by negative regulation of the anorexigenic effects of leptin, and impacts on glucose metabolism.


Assuntos
Adiposidade , Leptina , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Citocinas/metabolismo , Ingestão de Alimentos , Glucose/metabolismo , Leptina/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Proteínas Supressoras da Sinalização de Citocina , Domínios de Homologia de src
18.
J Mol Diagn ; 24(4): 337-350, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134542

RESUMO

Pharmacogenetic tests typically target selected sequence variants to identify haplotypes that are often defined by star (∗) allele nomenclature. Due to their design, these targeted genotyping assays are unable to detect novel variants that may change the function of the gene product and thereby affect phenotype prediction and patient care. In the current study, 137 DNA samples that were previously characterized by the Genetic Testing Reference Material (GeT-RM) program using a variety of targeted genotyping methods were recharacterized using targeted and whole genome sequencing analysis. Sequence data were analyzed using three genotype calling tools to identify star allele diplotypes for CYP2C8, CYP2C9, and CYP2C19. The genotype calls from next-generation sequencing (NGS) correlated well to those previously reported, except when novel alleles were present in a sample. Six novel alleles and 38 novel suballeles were identified in the three genes due to identification of variants not covered by targeted genotyping assays. In addition, several ambiguous genotype calls from a previous study were resolved using the NGS and/or long-read NGS data. Diplotype calls were mostly consistent between the calling algorithms, although several discrepancies were noted. This study highlights the utility of NGS for pharmacogenetic testing and demonstrates that there are many novel alleles that are yet to be discovered, even in highly characterized genes such as CYP2C9 and CYP2C19.


Assuntos
Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C9/genética , Genótipo , Haplótipos/genética , Humanos
19.
PLoS One ; 17(2): e0263312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213570

RESUMO

BACKGROUND: It remains unclear as to whether polycystic ovary syndrome (PCOS) is an additional risk factor in the development of left ventricular (LV) hypertrophy in obese women. In the current study, we provide clarity on this issue by rigorously analysing patient LV geometry beyond the basic clinical measures currently used. Importantly, the cohort contained only normotensive patients that would normally be deemed low risk with no further intervention required. METHODS: The study comprised 24 obese women with PCOS and 29 obese Control women. Transthoracic echocardiography was used to evaluate LV structure/function. Basic clinical and metabolic data were collected for each participant consisting of age, BMI, blood pressure, fasting glucose, LDL-C, HLD-C, cholesterol and triglyceride levels. Exclusion criteria; BMI < 30 g/m2, type 2 diabetes, hypertension. RESULTS: Both groups exhibited concentric remodelling of the LV posterior wall at a prevalence of ~20%, this associated with grade 1 diastolic dysfunction. Estimated LV mass/height2.7 was increased patients with PCOS (45 ± 2.2 vs 37 ± 1.6) with 33% exhibiting LV mass/height2.7 above ASE guidelines, compared to 7% in Controls. Furthermore, 25% of patients with PCOS were characterised with concentric hypertrophy, an alteration in LV geometry that was not observed in the Control group. CONCLUSIONS: To our knowledge, this is the first study to assess LV geometric patterns in obese women with PCOS. The results suggest that obese women with PCOS are at greater risk of concentric hypertrophy than obese only women and provide justification for additional cardiovascular risk assessment in normotensive obese/PCOS women.


Assuntos
Ecocardiografia , Hipertrofia Ventricular Esquerda/diagnóstico , Obesidade/diagnóstico por imagem , Síndrome do Ovário Policístico/diagnóstico por imagem , Adulto , Glicemia , Pressão Sanguínea , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Insuficiência Cardíaca Diastólica/complicações , Insuficiência Cardíaca Diastólica/diagnóstico por imagem , Insuficiência Cardíaca Diastólica/patologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Humanos , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etiologia , Obesidade/sangue , Obesidade/complicações , Obesidade/patologia , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/patologia , Triglicerídeos/sangue , Função Ventricular Esquerda/fisiologia
20.
Transl Psychiatry ; 11(1): 598, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824208

RESUMO

Lithium, a mood stabilizer and common adjunctive treatment for refractory depression, shares overlapping mechanisms of action with ketamine and enhances the duration of ketamine's antidepressant actions in rodent models at sub-therapeutic doses. Yet, in a recent clinical trial, lithium co-treatment with ketamine failed to improve antidepressant outcomes in subjects previously shown to respond to ketamine alone. The potential for lithium augmentation to improve antidepressant outcomes in ketamine nonresponders, however, has not been explored. The current study examined the behavioral, molecular and metabolic actions of lithium and ketamine co-treatment in a rodent model of antidepressant resistance. Male Wistar rats were administered adrenocorticotropic hormone (ACTH; 100 µg/day, i.p. over 14 days) and subsequently treated with ketamine (10 mg/kg; 2 days; n = 12), lithium (37 mg/kg; 2 days; n = 12), ketamine + lithium (10 mg/kg + 37 mg/kg; 2 days; n = 12), or vehicle saline (0.9%; n = 12). Rats were subjected to open field (6 min) and forced swim tests (6 min). Peripheral blood and brain prefrontal cortical (PFC) tissue was collected one hour following stress exposure. Western blotting was used to determine the effects of treatment on extracellular signal-regulated kinase (ERK); mammalian target of rapamycin (mTOR), phospho kinase B (Akt), and glycogen synthase kinase-3ß (GSK3ß) protein levels in the infralimbic (IL) and prelimbic (PL) subregions of the PFC. Prefrontal oxygen consumption rate (OCR) and extracellular acidification rates (ECAR) were also determined in anterior PFC tissue at rest and following stimulation with brain-derived neurotrophic factor (BDNF) and tumor necrosis factor α (TNFα). Blood plasma levels of mTOR and insulin were determined using enzyme-linked immunosorbent assays (ELISAs). Overall, rats receiving ketamine+lithium displayed a robust antidepressant response to the combined treatment as demonstrated through significant reductions in immobility time (p < 0.05) and latency to immobility (p < 0.01). These animals also had higher expression of plasma mTOR (p < 0.01) and insulin (p < 0.001). Tissue bioenergetics analyses revealed that combined ketamine+lithium treatment did not significantly alter the respiratory response to BDNF or TNFα. Animals receiving both ketamine and lithium had significantly higher phosphorylation (p)-to-total expression ratios of mTOR (p < 0.001) and Akt (p < 0.01), and lower ERK in the IL compared to control animals. In contrast, pmTOR/mTOR levels were reduced in the PL of ketamine+lithium treated animals, while pERK/ERK expression levels were elevated. Taken together, these data demonstrate that lithium augmentation of ketamine in antidepressant nonresponsive animals improves antidepressant-like behavioral responses under stress, together with peripheral insulin efflux and region-specific PFC insulin signaling.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Ketamina , Adaptação Psicológica , Animais , Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Depressão/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Insulina , Lítio , Masculino , Ratos , Ratos Wistar , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA