Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
2.
Chest ; 165(6): 1415-1420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38211701

RESUMO

BACKGROUND: Endotracheal aspirates (ETAs) are widely used for microbiologic studies of the respiratory tract in intubated patients. However, they involve sampling through an established endotracheal tube using suction catheters, both of which can acquire biofilms that may confound results. RESEARCH QUESTION: Does standard clinical ETA in intubated patients accurately reflect the authentic lower airway bacterial microbiome? STUDY DESIGN AND METHODS: Comprehensive quantitative bacterial profiling using 16S rRNA V1-V2 gene sequencing was applied to compare bacterial populations captured by standard clinical ETA vs contemporaneous gold standard samples acquired directly from the lower airways through a freshly placed sterile tracheostomy tube. The study included 13 patients undergoing percutaneous tracheostomy following prolonged (median, 15 days) intubation. Metrics of bacterial composition, diversity, and relative quantification were applied to samples. RESULTS: Pre-tracheostomy ETAs closely resembled the gold standard immediate post-tracheostomy airway microbiomes in bacterial composition and community features of diversity and quantification. Endotracheal tube and suction catheter biofilms also resembled cognate ETA and fresh tracheostomy communities. INTERPRETATION: Unbiased molecular profiling shows that standard clinical ETA sampling has good concordance with the authentic lower airway microbiome in intubated patients.


Assuntos
Intubação Intratraqueal , Microbiota , RNA Ribossômico 16S , Traqueostomia , Humanos , Masculino , Feminino , Traqueostomia/métodos , Traqueostomia/instrumentação , Pessoa de Meia-Idade , Idoso , Biofilmes , Bactérias/isolamento & purificação , Bactérias/genética , Sucção
4.
Am J Respir Crit Care Med ; 206(12): 1508-1521, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36103583

RESUMO

Rationale: Primary graft dysfunction (PGD) is the principal cause of early morbidity and mortality after lung transplantation. The lung microbiome has been implicated in later transplantation outcomes but has not been investigated in PGD. Objectives: To define the peritransplant bacterial lung microbiome and relationship to host response and PGD. Methods: This was a single-center prospective cohort study. Airway lavage samples from donor lungs before organ procurement and recipient allografts immediately after implantation underwent bacterial 16S ribosomal ribonucleic acid gene sequencing. Recipient allograft samples were analyzed for cytokines by multiplex array and pepsin by ELISA. Measurements and Main Results: We enrolled 139 transplant subjects and obtained donor lung (n = 109) and recipient allograft (n = 136) samples. Severe PGD (persistent grade 3) developed in 15 subjects over the first 72 hours, and 40 remained without PGD (persistent grade 0). The microbiome of donor lungs differed from healthy lungs, and recipient allograft microbiomes differed from donor lungs. Development of severe PGD was associated with enrichment in the immediate postimplantation lung of oropharyngeal anaerobic taxa, particularly Prevotella. Elevated pepsin, a gastric biomarker, and a hyperinflammatory cytokine profile were present in recipient allografts in severe PGD and strongly correlated with microbiome composition. Together, immediate postimplantation allograft Prevotella/Streptococcus ratio, pepsin, and indicator cytokines were associated with development of severe PGD during the 72-hour post-transplantation period (area under the curve = 0.81). Conclusions: Lung allografts that develop PGD have a microbiome enriched in anaerobic oropharyngeal taxa, elevated gastric pepsin, and hyperinflammatory phenotype. These findings suggest a possible role for peritransplant aspiration in PGD, a potentially actionable mechanism that warrants further investigation.


Assuntos
Transplante de Pulmão , Microbiota , Disfunção Primária do Enxerto , Humanos , Disfunção Primária do Enxerto/etiologia , Pepsina A , Estudos Prospectivos , Transplante de Pulmão/efeitos adversos , Citocinas , Pulmão , Inflamação/complicações , Aloenxertos
6.
Int J Sports Phys Ther ; 17(2): 237-246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136693

RESUMO

BACKGROUND: Overutilization of diagnostic imaging is associated with poor outcomes and increased costs. Physical therapists demonstrate the ability to order diagnostic imaging safely and appropriately, and early access to physical therapy reduces unnecessary imaging, lowers healthcare costs, and improves outcomes. HYPOTHESIS/PURPOSE: The primary purpose of this study was to compare rates of compliance with the National Committee for Quality Assurance - Healthcare Effectiveness Data and Information Set (HEDIS) recommendations for diagnostic imaging in low back pain between physical therapists and primary care providers in young, athletic patients. STUDY DESIGN: Retrospective cohort study. METHODS: Military Health System Data Repository (MDR) data from January 2019 to May 2020 was reviewed for compliance with the low back pain HEDIS recommendation. The low back pain imaging HEDIS measure identifies the percentage of patients who did not have an imaging study (plain X-ray, MRI, CT Scan) ordered on the first encounter with a diagnosis of low back pain or in the 28 days following that first diagnosis. Chi-square tests compared HEDIS compliance rates, with α = 0.05 set a priori. RESULTS: From January 2019 to May 2020, in patients age 18-24, the MDR database identified 1,845 total visits for LBP identified in the Physical Therapy Clinic and 467 total visits for LBP in the Primary Care Clinic. In the Physical Therapy Clinic, 96.7% of encounters did not have imaging ordered within the first 28 days of onset of symptoms, compared with 82.0% in the Primary Care Clinic (p < .001). CONCLUSIONS: Utilizing data from a national standardized healthcare performance measure, physical therapists practicing in a direct-access setting were significantly more likely than primary care providers to adhere to guidelines for low back pain imaging in young, athletic patients. LEVEL OF EVIDENCE: Level 3.

7.
Int J Sports Phys Ther ; 17(6): 1144-1155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36873568

RESUMO

Background: Traumatic shoulder instability is a common injury in athletes and military personnel. Surgical stabilization reduces recurrence, but athletes often return to sport before recovering upper extremity rotational strength and sport-specific abilities. Blood flow restriction (BFR) may stimulate muscle growth without the need for heavy resistance training post-surgically. Hypothesis/Purpose: To observe changes in shoulder strength, self-reported function, upper extremity performance, and range of motion (ROM) in military cadets recovering from shoulder stabilization surgery who completed a standard rehabilitation program with six weeks of BFR training. Study Design: Prospective case series. Methods: Military cadets who underwent shoulder stabilization surgery completed six weeks of upper extremity BFR training, beginning post-op week six. Primary outcomes were shoulder isometric strength and patient-reported function assessed at 6-weeks, 12-weeks, and 6-months postoperatively. Secondary outcomes included shoulder ROM assessed at each timepoint and the Closed Kinetic Chain Upper Extremity Stability Test (CKCUEST), the Upper Extremity Y-Balance Test (UQYBT), and the Unilateral Seated Shotput Test (USPT) assessed at the six-month follow-up. Results: Twenty cadets performed an average 10.9 BFR training sessions over six weeks. Statistically significant and clinically meaningful increases in surgical extremity external rotation strength (p < 0.001; mean difference, .049; 95% CI: .021, .077), abduction strength (p < 0.001; mean difference, .079; 95% CI: .050, .108), and internal rotation strength (p < 0.001; mean difference, .060; CI: .028, .093) occurred from six to 12 weeks postoperatively. Statistically significant and clinically meaningful improvements were reported on the Single Assessment Numeric Evaluation (p < 0.001; mean difference, 17.7; CI: 9.4, 25.9) and Shoulder Pain and Disability Index (p < 0.001; mean difference, -31.1; CI: -44.2, -18.0) from six to 12 weeks postoperatively. Additionally, over 70 percent of participants met reference values on two to three performance tests at 6-months. Conclusion: While the degree of improvement attributable to the addition of BFR is unknown, the clinically meaningful improvements in shoulder strength, self-reported function, and upper extremity performance warrant further exploration of BFR during upper extremity rehabilitation. Level of Evidence: 4, Case Series.

9.
mBio ; 12(4): e0177721, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399607

RESUMO

Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.


Assuntos
Bactérias/classificação , Disbiose/microbiologia , Pulmão/microbiologia , Nasofaringe/microbiologia , Orofaringe/microbiologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anelloviridae/classificação , Anelloviridae/genética , Anelloviridae/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , COVID-19/patologia , Feminino , Humanos , Contagem de Linfócitos , Masculino , Microbiota , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Índice de Gravidade de Doença
10.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338230

RESUMO

The healthy lung was long thought of as sterile, but recent advances using molecular sequencing approaches have detected bacteria at low levels. Healthy lung bacteria largely reflect communities present in the upper respiratory tract that enter the lung via microaspiration, which is balanced by mechanical and immune clearance and likely involves limited local replication. The nature and dynamics of the lung microbiome, therefore, differ from those of ecological niches with robust self-sustaining microbial communities. Aberrant populations (dysbiosis) have been demonstrated in many pulmonary diseases not traditionally considered microbial in origin, and potential pathways of microbe-host crosstalk are emerging. The question now is whether and how dysbiotic microbiota contribute to initiation or perpetuation of injury. The fungal microbiome and virome are less well studied. This Review highlights features of the lung microbiome, unique considerations in studying it, examples of dysbiosis in selected disease, emerging concepts in lung microbiome-host interactions, and critical areas for investigation.


Assuntos
Pneumopatias , Pulmão , Micobioma , Viroma , Animais , Humanos , Pulmão/microbiologia , Pulmão/virologia , Pneumopatias/microbiologia , Pneumopatias/virologia
11.
J Heart Lung Transplant ; 40(8): 733-744, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34120840

RESUMO

Culture-independent study of the lower respiratory tract after lung transplantation has enabled an understanding of the microbiome - that is, the collection of bacteria, fungi, and viruses, and their respective gene complement - in this niche. The lung has unique features as a microbial environment, with balanced entry from the upper respiratory tract, clearance, and local replication. There are many pressures impacting the microbiome after transplantation, including donor allograft factors, recipient host factors such as underlying disease and ongoing exposure to the microbe-rich upper respiratory tract, and transplantation-related immunosuppression, antimicrobials, and postsurgical changes. To date, we understand that the lung microbiome after transplant is dysbiotic; that is, it has higher biomass and altered composition compared to a healthy lung. Emerging data suggest that specific microbiome features may be linked to host responses, both immune and non-immune, and clinical outcomes such as chronic lung allograft dysfunction (CLAD), but many questions remain. The goal of this review is to put into context our burgeoning understanding of the lung microbiome in the postlung transplant patient, the interactions between microbiome and host, the role the microbiome may play in post-transplant complications, and critical outstanding research questions.


Assuntos
Disbiose/microbiologia , Transplante de Pulmão/efeitos adversos , Pulmão/microbiologia , Microbiota , Disbiose/etiologia , Humanos
12.
medRxiv ; 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33851179

RESUMO

Rationale: Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Objective: To define the respiratory tract microbiome in COVID-19 and relationship disease severity, systemic immunologic features, and outcomes. Methods and Measurements: We examined 507 oropharyngeal, nasopharyngeal and endotracheal samples from 83 hospitalized COVID-19 patients, along with non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR, and immune features were characterized by lymphocyte/neutrophil (L/N) ratios and deep immune profiling of peripheral blood mononuclear cells (PBMC). Main Results: COVID-19 patients had upper respiratory microbiome dysbiosis, and greater change over time than critically ill patients without COVID-19. Diversity at the first time point correlated inversely with disease severity during hospitalization, and microbiome composition was associated with L/N ratios and PBMC profiles in blood. Intubated patients showed patient-specific and dynamic lung microbiome communities, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Conclusions: The respiratory tract microbiome and commensal virome are disturbed in COVID-19, correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, possible use as biomarkers, and role of bacterial and viral taxa identified here in COVID-19 pathogenesis.

13.
Neurology ; 95(10): 454-457, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32586898

Assuntos
Infarto Cerebral/diagnóstico por imagem , Infecções por Coronavirus/diagnóstico por imagem , Globo Pálido/diagnóstico por imagem , Hipóxia/diagnóstico , Pneumonia Viral/diagnóstico por imagem , Betacoronavirus , COVID-19 , Infarto Cerebral/complicações , Infarto Cerebral/metabolismo , Infarto Cerebral/fisiopatologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Cetoacidose Diabética/complicações , Cetoacidose Diabética/metabolismo , Diagnóstico Diferencial , Feminino , Humanos , Coma Hiperglicêmico Hiperosmolar não Cetótico/complicações , Coma Hiperglicêmico Hiperosmolar não Cetótico/metabolismo , Hipertensão/complicações , Hipertensão/fisiopatologia , Hipóxia/complicações , Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/diagnóstico , Leucoencefalite Hemorrágica Aguda/diagnóstico , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/metabolismo , Pneumonia Viral/fisiopatologia , Insuficiência Respiratória/complicações , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/fisiopatologia , SARS-CoV-2 , Choque/complicações , Choque/metabolismo , Choque/fisiopatologia , Veia Subclávia/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Trombose Venosa/complicações , Trombose Venosa/diagnóstico por imagem
14.
Ann Am Thorac Soc ; 16(11): 1383-1391, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415219

RESUMO

Rationale: The oropharyngeal microbiome is a primary source of lung microbiota, contributes to lower respiratory infection, and is also a driver of oral health.Objectives: We sought to understand oropharyngeal microbial communities in advanced lung disease, community dynamics after lung transplantation, and ecological features of dysbiosis.Methods: Oropharyngeal wash samples were obtained from individuals with end-stage disease awaiting transplantation (n = 22) and longitudinally from individuals at 6 weeks, 3 months, and 6 months after transplantation (n = 33), along with healthy control subjects (n = 14). Bacterial 16S and fungal internal transcribed spacer rRNA regions were deep-sequenced, and bacterial community respiratory patterns were imputed from taxonomic composition.Results: Healthy subjects' oropharyngeal microbiomes showed a gradient of community types reflecting relative enrichment of strictly anaerobic, aerobic, or facultative anaerobic bacteria. Patients with end-stage lung disease showed severe dysbiosis by both taxonomic composition and respiration phenotypes, with reduced richness and diversity, increased facultative and decreased aerobic bacteria, and absence of communities characterized by obligate aerobes. In patients at 6 weeks and 3 months post-transplant, richness and diversity were intermediate between healthy and pretransplant subjects, with near-normal distribution of community types. However, by 6 months post-transplant, oropharyngeal wash resembled the low-diversity facultative-dominated profile of pretransplant subjects. Community ecotype correlated with Candida abundance.Conclusions: End-stage lung disease is associated with marked upper respiratory tract dysbiosis involving both community structure and respiratory metabolism profiles of constituent bacteria. Dynamic changes occur after lung transplantation, with partial normalization early but later appearance of severe dysbiosis similar to pretransplant patients. Aberrant oropharyngeal communities may predispose to abnormal lung microbiota and infection risk both in advanced lung disease and after transplantation.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Disbiose/microbiologia , Transplante de Pulmão/efeitos adversos , Orofaringe/microbiologia , Adulto , Idoso , Bactérias/classificação , Candida/isolamento & purificação , Estudos de Casos e Controles , DNA Espaçador Ribossômico/genética , Ecótipo , Feminino , Rejeição de Enxerto/microbiologia , Humanos , Aspergilose Pulmonar Invasiva/microbiologia , Masculino , Microbiota , Pessoa de Meia-Idade , Complicações Pós-Operatórias/microbiologia , RNA Ribossômico 16S/genética , Infecções Respiratórias/microbiologia
15.
PLoS One ; 14(5): e0217306, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141557

RESUMO

Endobronchial stents are increasingly used to treat airway complications in multiple conditions including lung transplantation but little is known about the biofilms that form on these devices. We applied deep sequencing to profile luminal biofilms of 46 endobronchial stents removed from 20 subjects primarily with lung transplantation-associated airway compromise. Microbial communities were analyzed by bacterial 16S rRNA and fungal ITS marker gene sequencing. Corynebacterium was the most common bacterial taxa across biofilm communities. Clustering analysis revealed three bacterial biofilm types: one low diversity and dominated by Corynebacterium; another was polymicrobial and characterized by Staphylococcus; and the third was polymicrobial and associated with Pseudomonas, Streptococcus, and Prevotella. Biofilm type was significantly correlated with stent material: covered metal with the Staphylococcus-type biofilm, silicone with the Corynebacterium-dominated biofilm, and uncovered metal with the polymicrobial biofilm. Subjects with sequential stents had frequent transitions between community types. Fungal analysis found Candida was most prevalent, Aspergillus was common and highly enriched in two of three stents associated with airway anastomotic dehiscence, and fungal taxa not typically considered pathogens were highly enriched in some stents. Thus, molecular analysis revealed a complex and dynamic endobronchial stent biofilm with three bacterial types that associate with stent material, a central role for Corynebacterium, and that both expected and unexpected fungi inhabit this unique niche. The current work provides a foundation for studies to investigate the relationship between stent biofilm composition and clinical outcomes, mechanisms of biofilm establishment, and strategies for improved stent technology and use in airway compromise.


Assuntos
Stents/efeitos adversos , Stents/microbiologia , Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Brônquios/microbiologia , Brônquios/cirurgia , Feminino , Fungos/genética , Humanos , Masculino , Microbiota , RNA Ribossômico 16S/genética
16.
Infect Control Hosp Epidemiol ; 40(2): 171-177, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30560753

RESUMO

BACKGROUND: Culture-based studies, which focus on individual organisms, have implicated stethoscopes as potential vectors of nosocomial bacterial transmission. However, the full bacterial communities that contaminate in-use stethoscopes have not been investigated. METHODS: We used bacterial 16S rRNA gene deep-sequencing, analysis, and quantification to profile entire bacterial populations on stethoscopes in use in an intensive care unit (ICU), including practitioner stethoscopes, individual-use patient-room stethoscopes, and clean unused individual-use stethoscopes. Two additional sets of practitioner stethoscopes were sampled before and after cleaning using standardized or practitioner-preferred methods. RESULTS: Bacterial contamination levels were highest on practitioner stethoscopes, followed by patient-room stethoscopes, whereas clean stethoscopes were indistinguishable from background controls. Bacterial communities on stethoscopes were complex, and community analysis by weighted UniFrac showed that physician and patient-room stethoscopes were indistinguishable and significantly different from clean stethoscopes and background controls. Genera relevant to healthcare-associated infections (HAIs) were common on practitioner stethoscopes, among which Staphylococcus was ubiquitous and had the highest relative abundance (6.8%-14% of contaminating bacterial sequences). Other HAI-related genera were also widespread although lower in abundance. Cleaning of practitioner stethoscopes resulted in a significant reduction in bacterial contamination levels, but these levels reached those of clean stethoscopes in only a few cases with either standardized or practitioner-preferred methods, and bacterial community composition did not significantly change. CONCLUSIONS: Stethoscopes used in an ICU carry bacterial DNA reflecting complex microbial communities that include nosocomially important taxa. Commonly used cleaning practices reduce contamination but are only partially successful at modifying or eliminating these communities.

19.
Clin Chest Med ; 36(3): 385-400, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26304276

RESUMO

Targeted temperature management has an established role in treating the post-cardiac arrest syndrome after out-of-hospital cardiac arrest with an initial rhythm of ventricular tachycardia/ventricular fibrillation. There is less certain benefit if the initial rhythm is pulseless electrical activity/asystole or for in-hospital cardiac arrest. Targeted temperature management may have a role as salvage modality for conditions causing intracranial hypertension, such as traumatic brain injury, hepatic encephalopathy, intracerebral hemorrhage, and acute stroke. There is variable evidence for its use early in these disorders to minimize secondary neurologic injury.


Assuntos
Parada Cardíaca/terapia , Hipotermia Induzida/métodos , Temperatura , Gerenciamento Clínico , Humanos , Prognóstico
20.
Free Radic Biol Med ; 87: 373-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26119780

RESUMO

Sepsis, a severe response to infection, leads to excessive inflammation and is the major cause of mortality in intensive care units. Mitochondria have been shown to influence the outcome of septic injury. We have previously shown that MAP kinase kinase 3 (MKK3)(-/-) mice are resistant to septic injury and MKK3(-/-) macrophages have improved mitochondrial function. In this study we examined processes that lead to improved mitochondrial quality in MKK3(-/-) mouse embryonic fibroblasts (MEFs) and specifically the role of mitophagy in mitochondrial health. MKK3(-/-) MEFs had lower inflammatory cytokine release and oxidant production after lipopolysaccharide (LPS) stimulation, confirming our earlier observations. MKK3(-/-) MEFs had better mitochondrial function as measured by mitochondrial membrane potential (MMP) and ATP, even after LPS treatment. We observed higher mitophagy in MKK3(-/-) MEFs compared to wild type (WT). Transmission electron microscopy studies showed longer and larger mitochondria in MKK3(-/-) MEFs, indicative of healthier mitochondria. We performed a SILAC (stable isotope labeling by/with amino acids in cell culture) study to assess differences in mitochondrial proteome between WT and MKK3(-/-) MEFs and observed increased expression of tricarboxylic acid (TCA) cycle enzymes and respiratory complex subunits. Further, inhibition of mitophagy by Mdivi1 led to loss in MMP and increased cytokine secretion after LPS treatment in MKK3(-/-) MEFs. In conclusion, this study demonstrates that MKK3 influences mitochondrial quality by affecting the expression of mitochondrial proteins, including TCA cycle enzymes, and mitophagy, which consequently regulates the inflammatory response. Based on our results, MKK3 could be a potential therapeutic target for inflammatory diseases like sepsis.


Assuntos
Inflamação/genética , MAP Quinase Quinase 3/genética , Mitocôndrias/metabolismo , Sepse/genética , Animais , Ciclo do Ácido Cítrico/genética , Fibroblastos/metabolismo , Deleção de Genes , Humanos , Inflamação/metabolismo , Inflamação/patologia , Marcação por Isótopo , MAP Quinase Quinase 3/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Mitofagia/genética , Sepse/metabolismo , Sepse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA