Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 11: e16578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144190

RESUMO

Data on individual tree crowns from remote sensing have the potential to advance forest ecology by providing information about forest composition and structure with a continuous spatial coverage over large spatial extents. Classifying individual trees to their taxonomic species over large regions from remote sensing data is challenging. Methods to classify individual species are often accurate for common species, but perform poorly for less common species and when applied to new sites. We ran a data science competition to help identify effective methods for the task of classification of individual crowns to species identity. The competition included data from three sites to assess each methods' ability to generalize patterns across two sites simultaneously and apply methods to an untrained site. Three different metrics were used to assess and compare model performance. Six teams participated, representing four countries and nine individuals. The highest performing method from a previous competition in 2017 was applied and used as a baseline to understand advancements and changes in successful methods. The best species classification method was based on a two-stage fully connected neural network that significantly outperformed the baseline random forest and gradient boosting ensemble methods. All methods generalized well by showing relatively strong performance on the trained sites (accuracy = 0.46-0.55, macro F1 = 0.09-0.32, cross entropy loss = 2.4-9.2), but generally failed to transfer effectively to the untrained site (accuracy = 0.07-0.32, macro F1 = 0.02-0.18, cross entropy loss = 2.8-16.3). Classification performance was influenced by the number of samples with species labels available for training, with most methods predicting common species at the training sites well (maximum F1 score of 0.86) relative to the uncommon species where none were predicted. Classification errors were most common between species in the same genus and different species that occur in the same habitat. Most methods performed better than the baseline in detecting if a species was not in the training data by predicting an untrained mixed-species class, especially in the untrained site. This work has highlighted that data science competitions can encourage advancement of methods, particularly by bringing in new people from outside the focal discipline, and by providing an open dataset and evaluation criteria from which participants can learn.


Assuntos
Ciência de Dados , Tecnologia de Sensoriamento Remoto , Humanos , Redes Neurais de Computação , Ecossistema
2.
Nature ; 602(7897): 442-448, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173342

RESUMO

Night-time provides a critical window for slowing or extinguishing fires owing to the lower temperature and the lower vapour pressure deficit (VPD). However, fire danger is most often assessed based on daytime conditions1,2, capturing what promotes fire spread rather than what impedes fire. Although it is well appreciated that changing daytime weather conditions are exacerbating fire, potential changes in night-time conditions-and their associated role as fire reducers-are less understood. Here we show that night-time fire intensity has increased, which is linked to hotter and drier nights. Our findings are based on global satellite observations of daytime and night-time fire detections and corresponding hourly climate data, from which we determine landcover-specific thresholds of VPD (VPDt), below which fire detections are very rare (less than 95 per cent modelled chance). Globally, daily minimum VPD increased by 25 per cent from 1979 to 2020. Across burnable lands, the annual number of flammable night-time hours-when VPD exceeds VPDt-increased by 110 hours, allowing five additional nights when flammability never ceases. Across nearly one-fifth of burnable lands, flammable nights increased by at least one week across this period. Globally, night fires have become 7.2 per cent more intense from 2003 to 2020, measured via a satellite record. These results reinforce the lack of night-time relief that wildfire suppression teams have experienced in recent years. We expect that continued night-time warming owing to anthropogenic climate change will promote more intense, longer-lasting and larger fires.


Assuntos
Escuridão , Aquecimento Global , Incêndios Florestais , Aquecimento Global/estatística & dados numéricos , Tempo (Meteorologia) , Incêndios Florestais/prevenção & controle , Incêndios Florestais/estatística & dados numéricos
3.
PeerJ ; 9: e11790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395073

RESUMO

Airborne remote sensing offers unprecedented opportunities to efficiently monitor vegetation, but methods to delineate and classify individual plant species using the collected data are still actively being developed and improved. The Integrating Data science with Trees and Remote Sensing (IDTReeS) plant identification competition openly invited scientists to create and compare individual tree mapping methods. Participants were tasked with training taxon identification algorithms based on two sites, to then transfer their methods to a third unseen site, using field-based plant observations in combination with airborne remote sensing image data products from the National Ecological Observatory Network (NEON). These data were captured by a high resolution digital camera sensitive to red, green, blue (RGB) light, hyperspectral imaging spectrometer spanning the visible to shortwave infrared wavelengths, and lidar systems to capture the spectral and structural properties of vegetation. As participants in the IDTReeS competition, we developed a two-stage deep learning approach to integrate NEON remote sensing data from all three sensors and classify individual plant species and genera. The first stage was a convolutional neural network that generates taxon probabilities from RGB images, and the second stage was a fusion neural network that "learns" how to combine these probabilities with hyperspectral and lidar data. Our two-stage approach leverages the ability of neural networks to flexibly and automatically extract descriptive features from complex image data with high dimensionality. Our method achieved an overall classification accuracy of 0.51 based on the training set, and 0.32 based on the test set which contained data from an unseen site with unknown taxa classes. Although transferability of classification algorithms to unseen sites with unknown species and genus classes proved to be a challenging task, developing methods with openly available NEON data that will be collected in a standardized format for 30 years allows for continual improvements and major gains for members of the computational ecology community. We outline promising directions related to data preparation and processing techniques for further investigation, and provide our code to contribute to open reproducible science efforts.

4.
PLoS One ; 16(8): e0248297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415899

RESUMO

Vessel-based sonar systems that focus on the water column provide valuable information on the distribution of underwater marine organisms, but such data are expensive to collect and limited in their spatiotemporal coverage. Satellite data, however, are widely available across large regions and provide information on surface ocean conditions. If satellite data can be linked to subsurface sonar measurements, it may be possible to predict marine life over broader spatial regions with higher frequency using satellite observations. Here, we use random forest models to evaluate the potential for predicting a sonar-derived proxy for subsurface biomass as a function of satellite imagery in the California Current Ecosystem. We find that satellite data may be useful for prediction under some circumstances, but across a range of sonar frequencies and depths, overall model performance was low. Performance in spatial interpolation tasks exceeded performance in spatial and temporal extrapolation, suggesting that this approach is not yet reliable for forecasting or spatial extrapolation. We conclude with some potential limitations and extensions of this work.


Assuntos
Organismos Aquáticos , Ecossistema , Imagens de Satélites/métodos , Biomassa , California , Oceano Pacífico , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA