Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Cell Dev Biol ; 12: 1357968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440075

RESUMO

The Nuclear Receptor (NR) family of transcriptional regulators possess the ability to sense signalling molecules and directly couple that to a transcriptional response. While this large class of proteins are united by sequence and structural homology, individual NR functional output varies greatly depending on their expression, ligand selectivity and DNA binding sequence specificity. Many NRs have remained somewhat enigmatic, with the absence of a defined ligand categorising them as orphan nuclear receptors. One example is Nuclear Receptor subfamily 6 group A member 1 (Nr6a1), an orphan nuclear receptor that has no close evolutionary homologs and thus is alone in subfamily 6. Nonetheless, Nr6a1 has emerged as an important player in the regulation of key pluripotency and developmental genes, as functionally critical for mid-gestational developmental progression and as a possible molecular target for driving evolutionary change in animal body plan. Here, we review the current knowledge on this enigmatic nuclear receptor and how it impacts development and evolution.

2.
Nat Commun ; 14(1): 5466, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749075

RESUMO

The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Distrofia Muscular Facioescapuloumeral , Animais , Camundongos , Cromatina/genética , Epigenômica , Inativação Gênica , Genes Homeobox , Distrofia Muscular Facioescapuloumeral/genética , Proteínas Cromossômicas não Histona/genética
3.
Nat Commun ; 13(1): 7766, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522318

RESUMO

The vertebrate main-body axis is laid down during embryonic stages in an anterior-to-posterior (head-to-tail) direction, driven and supplied by posteriorly located progenitors. Whilst posterior expansion and segmentation appears broadly uniform along the axis, there is developmental and evolutionary support for at least two discrete modules controlling processes within different axial regions: a trunk and a tail module. Here, we identify Nuclear receptor subfamily 6 group A member 1 (Nr6a1) as a master regulator of trunk development in the mouse. Specifically, Nr6a1 was found to control vertebral number and segmentation of the trunk region, autonomously from other axial regions. Moreover, Nr6a1 was essential for the timely progression of Hox signatures, and neural versus mesodermal cell fate choice, within axial progenitors. Collectively, Nr6a1 has an axially-restricted role in all major cellular and tissue-level events required for vertebral column formation, supporting the view that changes in Nr6a1 levels may underlie evolutionary changes in axial formulae.


Assuntos
Mesoderma , Vertebrados , Animais , Camundongos , Vertebrados/genética , Coluna Vertebral , Regulação da Expressão Gênica no Desenvolvimento , Padronização Corporal/genética
5.
Nat Commun ; 13(1): 4295, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879318

RESUMO

Parents transmit genetic and epigenetic information to their offspring. Maternal effect genes regulate the offspring epigenome to ensure normal development. Here we report that the epigenetic regulator SMCHD1 has a maternal effect on Hox gene expression and skeletal patterning. Maternal SMCHD1, present in the oocyte and preimplantation embryo, prevents precocious activation of Hox genes post-implantation. Without maternal SMCHD1, highly penetrant posterior homeotic transformations occur in the embryo. Hox genes are decorated with Polycomb marks H2AK119ub and H3K27me3 from the oocyte throughout early embryonic development; however, loss of maternal SMCHD1 does not deplete these marks. Therefore, we propose maternal SMCHD1 acts downstream of Polycomb marks to establish a chromatin state necessary for persistent epigenetic silencing and appropriate Hox gene expression later in the developing embryo. This is a striking role for maternal SMCHD1 in long-lived epigenetic effects impacting offspring phenotype.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Animais , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Expressão Gênica , Camundongos , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Gravidez
6.
Nat Commun ; 13(1): 243, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017475

RESUMO

The vertebral column of individual mammalian species often exhibits remarkable robustness in the number and identity of vertebral elements that form (known as axial formulae). The genetic mechanism(s) underlying this constraint however remain ill-defined. Here, we reveal the interplay of three regulatory pathways (Gdf11, miR-196 and Retinoic acid) is essential in constraining total vertebral number and regional axial identity in the mouse, from cervical through to tail vertebrae. All three pathways have differing control over Hox cluster expression, with heterochronic and quantitative changes found to parallel changes in axial identity. However, our work reveals an additional role for Hox genes in supporting axial elongation within the tail region, providing important support for an emerging view that mammalian Hox function is not limited to imparting positional identity as the mammalian body plan is laid down. More broadly, this work provides a molecular framework to interrogate mechanisms of evolutionary change and congenital anomalies of the vertebral column.


Assuntos
Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , MicroRNAs/metabolismo , Coluna Vertebral/metabolismo , Tretinoína/metabolismo , Animais , Evolução Biológica , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Genes Homeobox , Fatores de Diferenciação de Crescimento/genética , Proteínas de Homeodomínio , Mamíferos , Camundongos , MicroRNAs/genética , Cauda/metabolismo , Transcriptoma
7.
Mol Syst Biol ; 17(4): e9945, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33890404

RESUMO

Positive feedback driven by transcriptional regulation has long been considered a key mechanism underlying cell lineage segregation during embryogenesis. Using the developing spinal cord as a paradigm, we found that canonical, transcription-driven feedback cannot explain robust lineage segregation of motor neuron subtypes marked by two cardinal factors, Hoxa5 and Hoxc8. We propose a feedback mechanism involving elementary microRNA-mRNA reaction circuits that differ from known feedback loop-like structures. Strikingly, we show that a wide range of biologically plausible post-transcriptional regulatory parameters are sufficient to generate bistable switches, a hallmark of positive feedback. Through mathematical analysis, we explain intuitively the hidden source of this feedback. Using embryonic stem cell differentiation and mouse genetics, we corroborate that microRNA-mRNA circuits govern tissue boundaries and hysteresis upon motor neuron differentiation with respect to transient morphogen signals. Our findings reveal a previously underappreciated feedback mechanism that may have widespread functions in cell fate decisions and tissue patterning.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Retroalimentação Fisiológica , MicroRNAs/genética , Neurônios Motores/metabolismo , Medula Espinal/citologia , Animais , Sequência de Bases , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Cinética , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Fatores de Transcrição/metabolismo , Transcrição Gênica , Tretinoína/metabolismo
8.
Science ; 370(6517)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154111

RESUMO

Interactions of transcription factors (TFs) with DNA regulatory sequences, known as enhancers, specify cell identity during animal development. Unlike TFs, the origin and evolution of enhancers has been difficult to trace. We drove zebrafish and mouse developmental transcription using enhancers from an evolutionarily distant marine sponge. Some of these sponge enhancers are located in highly conserved microsyntenic regions, including an Islet enhancer in the Islet-Scaper region. We found that Islet enhancers in humans and mice share a suite of TF binding motifs with sponges, and that they drive gene expression patterns similar to those of sponge and endogenous Islet enhancers in zebrafish. Our results suggest the existence of an ancient and conserved, yet flexible, genomic regulatory syntax that has been repeatedly co-opted into cell type-specific gene regulatory networks across the animal kingdom.


Assuntos
Sequência Conservada , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/metabolismo , Poríferos/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , Humanos , Camundongos , Peixe-Zebra/genética
9.
Cell Rep ; 29(8): 2408-2421.e4, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747609

RESUMO

Coordinated movement requires the integration of many sensory inputs including proprioception, the sense of relative body position and force associated with movement. Proprioceptive information is relayed to the cerebellum via spinocerebellar neurons, located in the spinal cord within a number of major neuronal columns or as various scattered populations. Despite the importance of proprioception to fluid movement, a molecular understanding of spinocerebellar relay interneurons is only beginning to be explored, with limited knowledge of molecular heterogeneity within and between columns. Using fluorescent reporter mice, neuronal tracing, and in situ hybridization, we identify widespread expression of Hox cluster genes within spinocerebellar neurons. We reveal a "Hox code" based on axial level and individual spinocerebellar column, which, at cervico-thoracic levels, is essential for subtype regionalization. Specifically, we show that Hoxc9 function is required in most, but not all, cells of the thoracic spinocerebellar column, Clarke's column, revealing heterogeneity reliant on Hox signatures.


Assuntos
Neurônios/metabolismo , Medula Espinal/citologia , Animais , Cerebelo/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/citologia , Camundongos , MicroRNAs/metabolismo , Vias Neurais/fisiologia , Propriocepção/genética , Propriocepção/fisiologia , Células Receptoras Sensoriais/citologia
10.
Methods Mol Biol ; 1920: 183-218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30737693

RESUMO

Analysis of gene (mRNA and protein) expression patterns is central to the study of embryonic development. This chapter details methods for detecting mRNA and protein expression in whole-mouse embryos and in tissue sections, including mRNA in situ hybridization, immunohistochemistry, and detection of enzymatic and fluorescent protein reporters. We focus on histological methods; molecular methods of measuring gene expression (for example, RNAseq, PCR) are not included here.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Expressão Gênica , Imuno-Histoquímica , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores , Desenvolvimento Embrionário/genética , Genes Reporter , Imuno-Histoquímica/métodos , Hibridização In Situ , Camundongos , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Nat Struct Mol Biol ; 25(9): 766-777, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127357

RESUMO

The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add Smchd1 to the canon of epigenetic proteins required for Hox-gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes that depend on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we found increased short-range interactions and ectopic enhancer activation. In contrast, the inactive X chromosome was transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. In the inactive X, we observed spreading of trimethylated histone H3 K27 (H3K27me3) domains into regions not normally decorated by this mark. Together, these data suggest that Smchd1 is able to insulate chromatin, thereby limiting access to other chromatin-modifying proteins.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Genes Homeobox , Família Multigênica , Cromossomo X , Animais , Proteínas Cromossômicas não Histona/genética , Elementos Facilitadores Genéticos , Deleção de Genes , Inativação Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
J Exp Med ; 215(8): 2115-2136, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29997117

RESUMO

We have shown that antagomiR inhibition of miRNA miR-21 and miR-196b activity is sufficient to ablate MLL-AF9 leukemia stem cells (LSC) in vivo. Here, we used an shRNA screening approach to mimic miRNA activity on experimentally verified miR-196b targets to identify functionally important and therapeutically relevant pathways downstream of oncogenic miRNA in MLL-r AML. We found Cdkn1b (p27Kip1) is a direct miR-196b target whose repression enhanced an embryonic stem cell-like signature associated with decreased leukemia latency and increased numbers of leukemia stem cells in vivo. Conversely, elevation of p27Kip1 significantly reduced MLL-r leukemia self-renewal, promoted monocytic differentiation of leukemic blasts, and induced cell death. Antagonism of miR-196b activity or pharmacologic inhibition of the Cks1-Skp2-containing SCF E3-ubiquitin ligase complex increased p27Kip1 and inhibited human AML growth. This work illustrates that understanding oncogenic miRNA target pathways can identify actionable targets in leukemia.


Assuntos
Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Cromossomos Humanos Par 11/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Oncogenes , RNA Interferente Pequeno/metabolismo
13.
Int J Dev Biol ; 62(11-12): 693-704, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30604839

RESUMO

Precise regulation of Hox gene activity is essential to achieve proper control of animal embryonic development and to avoid generation of a variety of malignancies. This is a multilayered process, including complex polycistronic transcription, RNA processing, microRNA repression, long noncoding RNA regulation and sequence-specific translational control, acting together to achieve robust quantitative and qualitative Hox protein output. For many such mechanisms, the Hox cluster gene network has turned out to serve as a paradigmatic model for their study. In this review, we discuss current knowledge of how the different layers of post-transcriptional regulation and the production of a variety of noncoding RNA species control Hox output, and how this shapes formation of developmental systems that are reproducibly patterned by complex Hox networks.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Transcriptoma , Animais , Desenvolvimento Embrionário/fisiologia , MicroRNAs/genética , RNA Longo não Codificante/genética
14.
Mol Cancer ; 14: 169, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26376988

RESUMO

BACKGROUND: The establishment and maintenance of polarity is vital for embryonic development and loss of polarity is a frequent characteristic of epithelial cancers, however the underlying molecular mechanisms remain unclear. Here, we identify a novel role for the polarity protein Scrib as a mediator of epidermal permeability barrier acquisition, skeletal morphogenesis, and as a potent tumor suppressor in cutaneous carcinogenesis. METHODS: To explore the role of Scrib during epidermal development, we compared the permeability of toluidine blue dye in wild-type, Scrib heterozygous and Scrib KO embryonic epidermis at E16.5, E17.5 and E18.5. Mouse embryos were stained with alcian blue and alizarin red for skeletal analysis. To establish whether Scrib plays a tumor suppressive role during skin tumorigenesis and/or progression, we evaluated an autochthonous mouse model of skin carcinogenesis in the context of Scrib loss. We utilised Cre-LoxP technology to conditionally deplete Scrib in adult epidermis, since Scrib KO embryos are neonatal lethal. RESULTS: We establish that Scrib perturbs keratinocyte maturation during embryonic development, causing impaired epidermal barrier formation, and that Scrib is required for skeletal morphogenesis in mice. Analysis of conditional transgenic mice deficient for Scrib specifically within the epidermis revealed no skin pathologies, indicating that Scrib is dispensable for normal adult epidermal homeostasis. Nevertheless, bi-allelic loss of Scrib significantly enhanced tumor multiplicity and progression in an autochthonous model of epidermal carcinogenesis in vivo, demonstrating Scrib is an epidermal tumor suppressor. Mechanistically, we show that apoptosis is the critical effector of Scrib tumor suppressor activity during skin carcinogenesis and provide new insight into the function of polarity proteins during DNA damage repair. CONCLUSIONS: For the first time, we provide genetic evidence of a unique link between skin carcinogenesis and loss of the epithelial polarity regulator Scrib, emphasizing that Scrib exerts a wide-spread tumor suppressive function in epithelia.


Assuntos
Carcinogênese/genética , Epiderme/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Cutâneas/genética , Animais , Carcinogênese/patologia , Diferenciação Celular/genética , Polaridade Celular/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Epiderme/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Genes Supressores de Tumor , Humanos , Integrases/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Neoplasias Cutâneas/patologia
15.
Proc Natl Acad Sci U S A ; 112(35): E4884-93, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283362

RESUMO

The Hox genes play a central role in patterning the embryonic anterior-to-posterior axis. An important function of Hox activity in vertebrates is the specification of different vertebral morphologies, with an additional role in axis elongation emerging. The miR-196 family of microRNAs (miRNAs) are predicted to extensively target Hox 3' UTRs, although the full extent to which miR-196 regulates Hox expression dynamics and influences mammalian development remains to be elucidated. Here we used an extensive allelic series of mouse knockouts to show that the miR-196 family of miRNAs is essential both for properly patterning vertebral identity at different axial levels and for modulating the total number of vertebrae. All three miR-196 paralogs, 196a1, 196a2, and 196b, act redundantly to pattern the midthoracic region, whereas 196a2 and 196b have an additive role in controlling the number of rib-bearing vertebra and positioning of the sacrum. Independent of this, 196a1, 196a2, and 196b act redundantly to constrain total vertebral number. Loss of miR-196 leads to a collective up-regulation of numerous trunk Hox target genes with a concomitant delay in activation of caudal Hox genes, which are proposed to signal the end of axis extension. Additionally, we identified altered molecular signatures associated with the Wnt, Fgf, and Notch/segmentation pathways and demonstrate that miR-196 has the potential to regulate Wnt activity by multiple mechanisms. By feeding into, and thereby integrating, multiple genetic networks controlling vertebral number and identity, miR-196 is a critical player defining axial formulae.


Assuntos
MicroRNAs/fisiologia , Coluna Vertebral/anatomia & histologia , Animais , Deleção de Genes , Camundongos , Camundongos Knockout , MicroRNAs/genética , Transcrição Gênica , Transcriptoma
16.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297900

RESUMO

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Assuntos
Adaptação Biológica/fisiologia , Venenos Elapídicos , Elapidae , Evolução Molecular , Genoma/fisiologia , Transcriptoma/fisiologia , Animais , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Elapidae/genética , Elapidae/metabolismo , Glândulas Exócrinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
17.
Dev Biol ; 381(1): 159-69, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23764427

RESUMO

Chordin-like 1 (CHRDL1) is a secreted bone morphogenetic protein (BMP) antagonist expressed in mesenchymal tissues whose function in development of the skeleton has not been examined in detail. Here we show Chrdl1 is dynamically expressed in the early distal limb bud mesenchyme, with expression becoming downregulated as development proceeds. Chrdl1 expression is largely excluded from the critical signaling center of the posterior limb bud, the Zone of Polarizing Activity (ZPA), as has been described for the BMP antagonist Gremlin (GREM1) (Scherz et al., 2004, Science, 305, 396-399). Unlike Grem1, Chrdl1 is expressed in the hindlimb by a small subset of ZPA cells and their descendants suggesting divergent regulation and function between the various BMP antagonists. Ectopic expression of Chrdl1 throughout the avian limb bud using viral misexpression resulted in an oligodactyly phenotype with loss of digits from the anterior limb, although the development of more proximal elements of the zeugopod and stylopod were unaffected. Overgrowths of soft tissue and syndactyly were also observed, resulting from impaired apoptosis and failure of the anterior mesenchyme to undergo SOX9-dependent chondrogenesis, instead persisting as an interdigital-like soft tissue phenotype. Sonic hedgehog (SHH) and fibroblast growth factor (FGF) signaling were upregulated and persisted later in development, however these changes were only detected late in limb development at timepoints when endogenous Grem1 would normally be downregulated and increasing BMP signaling would cause termination of Shh and Fgf expression. Our results suggest that the early stages of the GREM1-SHH-FGF signaling network are resistant to Chrdl1-overexpression, leading to normal formation of proximal limb structures, but that later Bmp expression, impaired by ectopic CHRDL1, is essential for formation of the correct complement of digits.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Botões de Extremidades/metabolismo , Animais , Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/embriologia , Embrião de Galinha , Condrogênese , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog/metabolismo , Botões de Extremidades/anormalidades , Transdução de Sinais
18.
Curr Genomics ; 13(4): 278-88, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23204917

RESUMO

Since the last common ancestor of Metazoa, animals have evolved complex body plans with specialized cells and spatial organization of tissues and organs. Arguably, one of the most significant innovations during animal evolutionary history was the establishment of a bilateral plane of symmetry on which morphological features (e.g. tissues, organs, appendages, skeleton) could be given specific coordinates within the animal along the anterior-posterior (A-P) and dorsal-ventral (D-V) axes. Hox genes are a known group of eumetazoan transcription factors central to regulating A-P patterning, but less well known and under current investigation is the broader regulatory landscape incorporating these genes, including microRNA (miRNA) regulation. The degree to which evolutionarily conserved targeting of Hox genes by Hox-embedded miRNAs contributes directly to A-P patterning is under investigation, yielding contrasting information dependent on the organism and miRNA of interest. The widespread A-P patterning defects observed in recent miR-196 loss-of-function studies solidifies the importance of miRNA regulation in Hox genetic hierarchies, and elucidating the developmental and evolutionary importance of all Hox-embedded miRNAs remains a challenge for the future.

19.
Genes Dev ; 26(18): 2088-102, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22987639

RESUMO

Muscle progenitor cells migrate from the lateral somites into the developing vertebrate limb, where they undergo patterning and differentiation in response to local signals. Sonic hedgehog (Shh) is a secreted molecule made in the posterior limb bud that affects patterning and development of multiple tissues, including skeletal muscles. However, the cell-autonomous and non-cell-autonomous functions of Shh during limb muscle formation have remained unclear. We found that Shh affects the pattern of limb musculature non-cell-autonomously, acting through adjacent nonmuscle mesenchyme. However, Shh plays a cell-autonomous role in maintaining cell survival in the dermomyotome and initiating early activation of the myogenic program in the ventral limb. At later stages, Shh promotes slow muscle differentiation cell-autonomously. In addition, Shh signaling is required cell-autonomously to regulate directional muscle cell migration in the distal limb. We identify neuroepithelial cell transforming gene 1 (Net1) as a downstream target and effector of Shh signaling in that context.


Assuntos
Diferenciação Celular , Extremidades/embriologia , Proteínas Hedgehog/metabolismo , Músculo Esquelético/embriologia , Transdução de Sinais , Animais , Morte Celular , Movimento Celular , Embrião de Galinha , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Camundongos , Músculo Esquelético/citologia , Proteínas Oncogênicas/metabolismo
20.
Curr Top Dev Biol ; 99: 31-57, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22365734

RESUMO

Exquisite regulation of Hox protein activity is fundamental to the regionalization of the early embryo across diverse taxa. Highlighting the critical importance of these transcription factors, an astonishing number of different mechanisms have evolved to tightly coordinate their activity both in time and in space. The recent identification of numerous microRNAs that are not only embedded within Hox clusters but also target numerous Hox genes suggests an important role for these regulatory molecules in shaping Hox protein output. Here, we discuss the positioning of these miRNAs within clusters over evolutionary time, the unexpected complexity in miRNA processing and target interactions, and the current understanding of Hox-embedded miRNA function during development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Animais , Evolução Biológica , Proteínas de Homeodomínio/genética , Humanos , MicroRNAs , Família Multigênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA