Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834873

RESUMO

Optic nerve injury causes secondary degeneration, a sequela that spreads damage from the primary injury to adjacent tissue, through mechanisms such as oxidative stress, apoptosis, and blood-brain barrier (BBB) dysfunction. Oligodendrocyte precursor cells (OPCs), a key component of the BBB and oligodendrogenesis, are vulnerable to oxidative deoxyribonucleic acid (DNA) damage by 3 days post-injury. However, it is unclear whether oxidative damage in OPCs occurs earlier at 1 day post-injury, or whether a critical 'window-of-opportunity' exists for therapeutic intervention. Here, a partial optic nerve transection rat model of secondary degeneration was used with immunohistochemistry to assess BBB dysfunction, oxidative stress, and proliferation in OPCs vulnerable to secondary degeneration. At 1 day post-injury, BBB breach and oxidative DNA damage were observed, alongside increased density of DNA-damaged proliferating cells. DNA-damaged cells underwent apoptosis (cleaved caspase3+), and apoptosis was associated with BBB breach. OPCs experienced DNA damage and apoptosis and were the major proliferating cell type with DNA damage. However, the majority of caspase3+ cells were not OPCs. These results provide novel insights into acute secondary degeneration mechanisms in the optic nerve, highlighting the need to consider early oxidative damage to OPCs in therapeutic efforts to limit degeneration following optic nerve injury.


Assuntos
Células Precursoras de Oligodendrócitos , Traumatismos do Nervo Óptico , Animais , Ratos , Traumatismos do Nervo Óptico/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Nervo Óptico/metabolismo , Estresse Oxidativo/fisiologia , DNA/metabolismo
2.
J Neurosci Methods ; 359: 109223, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34004202

RESUMO

BACKGROUND: Cellular responses at the sub-acute phase of mild traumatic brain injury (mTBI), and their contribution to ongoing damage, are unclear, complex and require simultaneous assessment of multiple cells to elucidate. NEW METHOD: An 11-colour flow cytometry method for analysing brain cells was evaluated in a weight-drop rat model of repeated mTBI. Animals received sham, one, two or three mTBI delivered at 24 h intervals (n = 6/group). Cerebrum homogenates were prepared 11 days after first mTBI, in two cohorts of n = 3/group to enable same-day staining of fresh tissue. Percentages of neurons, astrocytes, microglia, mature oligodendrocytes and NeuN + CC1+ cells, neutrophils, macrophages and non-myeloid leukocytes, and their immunoreactivity for cell damage indicators (inducible nitric oxide synthase; iNOS, proliferating cell nuclear antigen; PCNA, 8-Oxo-2'-deoxyguanosine; 8OHDG and 4-hydroxynonenal; HNE), were assessed. RESULTS: Median fluorescence intensity (MFI) of iNOS in activated microglia increased following two, but not one or three, mTBI (p = 0.04). However, there were differences between processing cohorts in terms of percentages and MFI of some PCNA+, iNOS+, 8OHDG + and HNE + cell populations. COMPARISON WITH EXISTING METHODS: Previous applications of flow cytometry for rat brain analysis were typically limited to three or four markers. This method uses 11 markers to identify nine cell populations and evaluate their immunoreactivity to four metabolic indicators of cell damage. CONCLUSIONS: Flow cytometry can be useful for discerning injury-related changes in multiple rat brain cells. However, markers sensitive to subtle changes in experimental conditions must be identified in pilot experiments and subsequently analysed in the same tissue-processing cohort.


Assuntos
Concussão Encefálica , Animais , Encéfalo , Citometria de Fluxo , Microglia , Neurônios , Ratos
3.
Front Neurol ; 11: 491, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547485

RESUMO

Whilst detrimental effects of repeated sub-concussive impacts on neurophysiological and behavioral function are increasingly reported, the underlying mechanisms are largely unknown. Here, we report that repeated sub-concussion with a light weight drop (25 g) in wild-type PVG rats for 2 weeks does not induce detectable neuromotor dysfunction assessed by beamwalk and rotarod tests. However, after 12 weeks of repeated sub-concussion, the rats exhibited moderate neuromotor dysfunction. This is the first study to demonstrate development of neuromotor dysfunction following multiple long-term sub-concussive impacts in rats. The outcomes may offer significant opportunity for future studies to understand the mechanisms of sub-concussion-induced neuropsychological changes.

4.
RSC Adv ; 10(5): 2856-2869, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35496130

RESUMO

Transferrin (Tf)-functionalized p(HEMA-ran-GMA) nanoparticles were designed to incorporate and release a water-soluble combination of three ion channel antagonists, namely zonampanel monohydrate (YM872), oxidized adenosine triphosphate (oxATP) and lomerizine hydrochloride (LOM) identified as a promising therapy for secondary degeneration that follows neurotrauma. Coupled with a mean hydrodynamic size of 285 nm and near-neutral surface charge of -5.98 mV, the hydrophilic nature of the functionalized polymeric nanoparticles was pivotal in effectively encapsulating the highly water soluble YM872 and oxATP, as well as lipophilic LOM dissolved in water-based medium, by a back-filling method. Maximum loading efficiencies of 11.8 ± 1.05% (w/w), 13.9 ± 1.50% (w/w) and 22.7 ± 4.00% (w/w) LOM, YM872 and oxATP respectively were reported. To obtain an estimate of drug exposure in vivo, drug release kinetics assessment by HPLC was conducted in representative physiological milieu containing 55% (v/v) human serum at 37 °C. In comparison to serum-free conditions, it was demonstrated that the inevitable adsorption of serum proteins on the Tf-functionalized nanoparticle surface as a protein corona impeded the rate of release of LOM and YM872 at both pH 5 and 7.4 over a period of 1 hour. While the release of oxATP from the nanoparticles was detectable for up to 30 minutes under serum-free conditions at pH 7.4, the presence of serum proteins and a slightly acidic environment impaired the detection of the drug, possibly due to its molecular instability. Nevertheless, under representative physiological conditions, all three drugs were released in combination from Tf-functionalized p(HEMA-ran-GMA) nanoparticles and detected for up to 20 minutes. Taken together, the study provided enhanced insight into potential physiological outcomes in the presence of serum proteins, and suggests that p(HEMA-ran-GMA)-based therapeutic nanoparticles may be promising drug delivery vehicles for CNS therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA