Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 435(2): 162-169, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29371032

RESUMO

DSL ligands activate the Notch receptor in many cellular contexts across metazoa to specify cell fate. In addition, Notch receptor activity is implicated in post-mitotic morphogenesis and neuronal function. In C. elegans, the DSL family ligand APX-1 is expressed in a subset of cells of the proximal gonad lineage, where it can act as a latent proliferation-promoting signal to maintain proximal germline tumors. Here we examine apx-1 in the proximal gonad and uncover a role in the maintenance of normal ovulation. Depletion of apx-1 causes an endomitotic oocyte (Emo) phenotype and ovulation defects. We find that lag-2 can substitute for apx-1 in this role, that the ovulation defect is partially suppressed by loss of ipp-5, and that lin-12 depletion causes a similar phenotype. In addition, we find that the ovulation defects are often accompanied by a delay of spermathecal distal neck closure after oocyte entry. Although calcium oscillations occur in the spermatheca, calcium signals are abnormal when the distal neck does not close completely. Moreover, oocytes sometimes cannot properly transit through the spermatheca, leading to fragmentation of oocytes once the neck closes. Finally, abnormal oocytes and neck closure defects are seen occasionally when apx-1 or lin-12 activity is reduced in adult animals, suggesting a possible post-developmental role for APX-1 and LIN-12 signaling in ovulation.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Endorreduplicação/genética , Organismos Hermafroditas/genética , Ovulação/genética , Canais de Sódio/fisiologia , Estruturas Animais/anormalidades , Estruturas Animais/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Sinalização do Cálcio , Organismos Hermafroditas/fisiologia , Proteínas de Membrana/fisiologia , Mitose , Oócitos , Ovulação/fisiologia , Fenótipo , Receptores Notch/deficiência , Receptores Notch/fisiologia , Canais de Sódio/deficiência , Canais de Sódio/genética
2.
Proc Natl Acad Sci U S A ; 106(28): 11617-22, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19564624

RESUMO

Stem cells, their niches, and their relationship to cancer are under intense investigation. Because tumors and metastases acquire self-renewing capacity, mechanisms for their establishment may involve cell-cell interactions similar to those between stem cells and stem cell niches. On the basis of our studies in Caenorhabditis elegans, we introduce the concept of a "latent niche" as a differentiated cell type that does not normally contact stem cells nor act as a niche but that can, under certain conditions, promote the ectopic self-renewal, proliferation, or survival of competent cells that it inappropriately contacts. Here, we show that ectopic germ-line stem cell proliferation in C. elegans is driven by a latent niche mechanism and that the molecular basis for this mechanism is inappropriate Notch activation. Furthermore, we show that continuous Notch signaling is required to maintain ectopic germ-line proliferation. We highlight the latent niche concept by distinguishing it from a normal stem cell niche, a premetastatic niche and an ectopic niche. One of the important distinguishing features of this mechanism for tumor initiation is that it could operate in the absence of genetic changes to the tumor cell or the tumor-promoting cell. We propose that a latent niche mechanism may underlie tumorigenesis and metastasis in humans.


Assuntos
Diferenciação Celular/fisiologia , Células Germinativas/citologia , Modelos Biológicos , Neoplasias/etiologia , Neoplasias/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Caenorhabditis elegans , Proliferação de Células , Plasmídeos/genética , Interferência de RNA
3.
Development ; 136(13): 2223-34, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19502484

RESUMO

Fertility depends on germline stem cell proliferation, meiosis and gametogenesis, yet how these key transitions are coordinated is unclear. In C. elegans, we show that GLP-1/Notch signaling functions in the germline to modulate oocyte growth when sperm are available for fertilization and the major sperm protein (MSP) hormone is present. Reduction-of-function mutations in glp-1 cause oocytes to grow abnormally large when MSP is present and Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells is active. By contrast, gain-of-function glp-1 mutations lead to the production of small oocytes. Surprisingly, proper oocyte growth depends on distal tip cell signaling involving the redundant function of GLP-1 ligands LAG-2 and APX-1. GLP-1 signaling also affects two cellular oocyte growth processes, actomyosin-dependent cytoplasmic streaming and oocyte cellularization. glp-1 reduction-of-function mutants exhibit elevated rates of cytoplasmic streaming and delayed cellularization. GLP-1 signaling in oocyte growth depends in part on the downstream function of the FBF-1/2 PUF RNA-binding proteins. Furthermore, abnormal oocyte growth in glp-1 mutants, but not the inappropriate differentiation of germline stem cells, requires the function of the cell death pathway. The data support a model in which GLP-1 function in MSP-dependent oocyte growth is separable from its role in the proliferation versus meiotic entry decision. Thus, two major germline signaling centers, distal GLP-1 activation and proximal MSP signaling, coordinate several spatially and temporally distinct processes by which germline stem cells differentiate into functional oocytes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Corrente Citoplasmática/fisiologia , Proteínas de Helminto/metabolismo , Glicoproteínas de Membrana/metabolismo , Oócitos/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Actinas/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes Reporter , Proteínas de Helminto/genética , Glicoproteínas de Membrana/genética , Miosinas/metabolismo , Oócitos/citologia , Receptores Notch/genética
4.
BMC Dev Biol ; 7: 41, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17472754

RESUMO

BACKGROUND: In insects and in mammals, male sperm and seminal fluid provide signaling factors that influence various aspects of female physiology and behavior to promote reproductive success and to compete with other males. It is less apparent how important such signaling is in the context of a self-fertile hermaphrodite species. We have addressed this question in the nematode Caenorhabditis elegans, which can reproduce either by hermaphrodite self-fertilization or by male-hermaphrodite mating. RESULTS: We have studied the egg-laying defective mutant, egl-32, and found that the cellular basis of the egl-32 egg-laying phenotype is likely a defect in sperm. First, the time of egl-32 action coincides with the timing of spermatogenesis in the hermaphrodite. Second, egl-32 interacts with genes expressed in sperm. Third, mating experiments have revealed that wild-type sperm can rescue the egg-laying defect of egl-32 mutant animals. Most importantly, introduction of mutant egl-32 sperm into wild-type hermaphrodites or females is sufficient to induce an egg-laying defective phenotype. CONCLUSION: Previous work has revealed that C. elegans sperm release factors that stimulate oocyte maturation and ovulation. Here we describe evidence that sperm also promote egg laying, the release of embryos from the uterus.


Assuntos
Caenorhabditis elegans/fisiologia , Oviposição/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Genes de Helmintos , Proteínas de Helminto/genética , Imuno-Histoquímica , Masculino , Mutação , Fenótipo , Espermatozoides/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA