RESUMO
A major limitation in the development of mucosal drug delivery systems is the design of in vitro models that accurately reflect in vivo conditions. Traditionally, models seek to mimic characteristics of physiological mucus, often focusing on property-specific trial metrics such as rheological behavior or diffusion of a nanoparticle of interest. Despite the success of these models, translation from in vitro results to in vivo trials is limited. As a result, several authors have called for work to develop standardized testing methodologies and characterize the influence of model properties on drug delivery performance. To this end, a series of trials is performed on 12 mucomimetic hydrogels reproduced from literature. Experiments show that there is no consistent correlation between barrier performance and rheological or microstructural properties of the tested mucomimetic hydrogels. In addition, the permeability of both mucopenetrating and mucoadhesive nanoparticles is assessed, revealing non-obvious variations in barrier properties such as the relative contributions of electrostatic and hydrophobic interactions in different models. These results demonstrate the limitations of predicting mucomimetic behavior with common characterization techniques and highlight the importance of testing barrier performance with multiple nanoparticle formulations.
RESUMO
Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression, including mediating tumour cell invasion via their pro-invasive secretory profile and ability to remodel the extracellular matrix (ECM). Given that reduced CAF abundance in tumours correlates with improved outcomes in various cancers, we set out to identify epigenetic targets involved in CAF activation in regions of tumour-stromal mixing with the goal of reducing tumour aggressiveness. Using the GLAnCE (Gels for Live Analysis of Compartmentalized Environments) platform, we performed an image-based, phenotypic screen that enabled us to identify modulators of CAF abundance and the capacity of CAFs to induce tumour cell invasion. We identified EHMT2 (also known as G9a), an enzyme that targets the methylation of histone 3 lysine 9 (H3K9), as a potent modulator of CAF abundance and CAF-mediated tumour cell invasion. Transcriptomic and functional analysis of EHMT2-inhibited CAFs revealed EHMT2 participated in driving CAFs towards a pro-invasive phenotype and mediated CAF hyperproliferation, a feature typically associated with activated fibroblasts in tumours. Our study suggests that EHMT2 regulates CAF state within the tumour microenvironment by impacting CAF activation, as well as by magnifying the pro-invasive effects of these activated CAFs on tumour cell invasion through promoting CAF hyperproliferation.
RESUMO
Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.
RESUMO
Background: Functional evaluation of molecules that are predicted to promote stem cell mediated endogenous repair often requires in vivo transplant studies that are low throughput and hinder the rate of discovery. To offer greater throughput for functional validation studies, we miniaturized, simplified and expanded the functionality of a previously developed muscle endogenous repair (MEndR) in vitro assay that was shown to capture significant events of in vivo muscle endogenous repair. Methods: The mini-MEndR assay consists of miniaturized cellulose scaffolds designed to fit in 96-well plates, the pores of which are infiltrated with human myoblasts encapsulated in a fibrin-based hydrogel to form engineered skeletal muscle tissues. Pre-adsorbing thrombin to the cellulose scaffolds facilitates in situ tissue polymerization, a critical modification that enables new users to rapidly acquire assay expertise. Following the generation of the 3D myotube template, muscle stem cells (MuSCs), enriched from digested mouse skeletal muscle tissue using an improved magnetic-activated cell sorting protocol, are engrafted within the engineered template. Murine MuSCs are fluorescently labeled, enabling co-evaluation of human and mouse Pax7+ cell responses to drug treatments. A regenerative milieu is introduced by injuring the muscle tissue with a myotoxin to initiate endogenous repair "in a dish". Phenotypic data is collected at endpoints with a high-content imaging system and is analyzed using ImageJ-based image analysis pipelines. Results: The miniaturized format and modified manufacturing protocol cuts reagent costs in half and hands-on seeding time ~ threefold, while the image analysis pipelines save 40 h of labour. By evaluating multiple commercially available human primary myoblast lines in 2D and 3D culture, we establish quality assurance metrics for cell line selection that standardizes myotube template quality. In vivo outcomes (enhanced muscle production and Pax7+ cell expansion) to a known modulator of MuSC mediated repair (p38/ß MAPK inhibition) are recapitulated in the miniaturized culture assay, but only in the presence of stem cells and the regenerative milieu. Discussion: The miniaturized predictive assay offers a simple, scaled platform to co-investigate human and mouse skeletal muscle endogenous repair molecular modulators, and thus is a promising strategy to accelerate the muscle endogenous repair discovery pipeline. Supplementary Information: The online version contains supplementary material available at 10.1186/s44330-024-00005-4.
RESUMO
Rapid advances in tissue engineering have resulted in more complex and physiologically relevant 3D in vitro tissue models with applications in fundamental biology and therapeutic development. However, the complexity provided by these models is often not leveraged fully due to the reductionist methods used to analyze them. Computational and mathematical models developed in the field of systems biology can address this issue. Yet, traditional systems biology has been mostly applied to simpler in vitro models with little physiological relevance and limited cellular complexity. Therefore, integrating these two inherently interdisciplinary fields can result in new insights and move both disciplines forward. In this review, we provide a systematic overview of how systems biology has been integrated with 3D in vitro tissue models and discuss key application areas where the synergies between both fields have led to important advances with potential translational impact. We then outline key directions for future research and discuss a framework for further integration between fields.
RESUMO
Mass cytometry permits the high dimensional analysis of complex biological samples; however, some techniques are not yet integrated into the mass cytometry workflow due to reagent availability. The use of self-labeling protein systems, such as HaloTag, are one such application. Here, we describe the design and implementation of the first mass cytometry ligands for use with HaloTag. "Click"-amenable HaloTag warheads were first conjugated onto poly(l-lysine) or poly(acrylic acid) polymers that were then functionalized with diethylenetriaminepentaacetic acid (DTPA) lutetium metal chelates. Kinetic analysis of the HaloTag labeling rates demonstrated that the structure appended to the 1-chlorohexyl warhead was key to success. A construct with a diethylene glycol spacer appended to a benzamide gave similar rates (kobs â¼ 102 M-1 s-1), regardless of the nature of the polymer. Comparison of the polymer with a small molecule chelate having rapid HaloTag labeling kinetics (kobs â¼ 104 M-1 s-1) suggests the polymers significantly reduced the HaloTag labeling rate. HEK293T cells expressing surface-exposed GFP-HaloTag fusions were labeled with the polymeric constructs and 175Lu content measured by cytometry by time-of-flight (CyTOF). Robust labeling was observed; however, significant nonspecific binding of the constructs to cells was also present. Heavily pegylated polymers demonstrated that nonspecific binding could be reduced to allow cells bearing the HaloTag protein to be distinguished from nonexpressing cells.
Assuntos
Hidrolases , Polímeros , Proteínas , Humanos , Ligantes , Cinética , Células HEK293RESUMO
Aldehydes are attractive bioorthogonal coupling partners. The ease of manipulation of aldehydes and their orthogonality to other classes of bioorthogonal reactions have inspired the exploration of chemistries, which generate irreversible conjugates. Similarly, nitrones have been shown to be potent 1,3-dipoles in bioorthogonal reactions when paired with strained alkynes. Here, we combine the reactivity of nitrones with the simplicity of aldehydes using an N-allylglyoxylamide, in a cascade reaction with an N-alkylhydroxylamine to produce a bicyclic isoxazolidine. The reaction is found to be catalyzed by 5-methoxyanthranilic acid and proceeds at pH 7 with favorable kinetics. Using the HaloTag7 protein bearing an N-alkylhydroxylamine, we show the reaction to be bioorthogonal in a complex cell lysate and to proceed well at the surface of a HEK293 cell. Furthermore, the reaction is compatible with a typical strain-promoted alkyne-azide click reaction. The characteristics of this reaction suggest it will be a useful addition to the pallet of bioorthogonal reactions that have revolutionized chemical biology.
Assuntos
Óxidos de Nitrogênio , Proteínas , Humanos , Células HEK293 , Proteínas/química , Óxidos de Nitrogênio/química , Alcinos/química , Aldeídos , Azidas/química , Reação de CicloadiçãoRESUMO
Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.
Assuntos
Neoplasias , Humanos , Biologia , Organoides , Fenótipo , Análise de Célula Única , Microambiente TumoralRESUMO
Patient-derived organoids have emerged as a useful tool to model tumour heterogeneity. Scaling these complex culture models while enabling stratified analysis of different cellular sub-populations, however, remains a challenge. One strategy to enable higher throughput organoid cultures is the scaffold-supported platform for organoid-based tissues (SPOT). SPOT allows the generation of flat, thin, and dimensionally-defined microtissues in both 96- and 384-well plate footprints that are compatible with longitudinal image-based readouts. SPOT is currently manufactured manually, however, limiting scalability. In this study, an automation approach to engineer tumour-mimetic 3D microtissues in SPOT using a liquid handler is optimized and comparable within- and between-sample variation to standard manual manufacturing is shown. Further, a liquid handler-supported cell extraction protocol to support single-cell-based end-point analysis using high-throughput flow cytometry and multiplexed cytometry by time of flight is developed. As a proof-of-value demonstration, 3D complex tissues containing different proportions of tumour and stromal cells are generated to probe the reciprocal impact of co-culture. It is also demonstrated that primary patient-derived organoids can be incorporated into the pipeline to capture patient-level tumour heterogeneity. It is envisioned that this automated 96/384-SPOT workflow will provide opportunities for future applications in high-throughput screening for novel personalized therapeutic targets.
Assuntos
Neoplasias , Humanos , Fluxo de Trabalho , Técnicas de Cocultura , Neoplasias/patologia , Ensaios de Triagem em Larga Escala/métodos , Automação , OrganoidesRESUMO
The spatial configuration of cells in the tumor microenvironment (TME) affects both cancer and fibroblast cell phenotypes contributing to the clinical challenge of tumor heterogeneity and therapeutic resistance. This is a particular challenge in stroma-rich pancreatic ductal adenocarcinoma (PDAC). Here, a versatile system is described to study the impact of tissue architecture on cell phenotype using PDAC as a model system. This fully human system encompassing both primary pancreatic stellate cells and primary organoid cells using the TRACER platform to allow the creation of user-defined TME architectures that have been inferred from clinical PDAC samples and are analyzed by CyTOF to characterize cells extracted from the system. High dimensional characterization using CyTOF demonstrates that tissue architecture leads to distinct hypoxia and proliferation gradients. Furthermore, phenotypic markers for both cell types are also graded in ways that cannot be explained by either hypoxia or coculture alone. This demonstrates the importance of using complex models encompassing cancer cells, stromal cells, and allowing control over architecture to explore the impact of tissue architecture on cell phenotype. It is anticipated that this model will help decipher how tissue architecture and cell interactions regulate cell phenotype and hence cellular and tissue heterogeneity.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Técnicas de Cocultura , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Fenótipo , Microambiente Tumoral , Neoplasias PancreáticasRESUMO
Complex 3D bioengineered tumour models provide the opportunity to better capture the heterogeneity of patient tumours. Patient-derived organoids are emerging as a useful tool to study tumour heterogeneity and variation in patient responses. Organoid cultures typically require a 3D microenvironment that can be manufactured easily to facilitate screening. Here we set out to create a high-throughput, "off-the-shelf" platform which permits the generation of organoid-containing engineered microtissues for standard phenotypic bioassays and image-based readings. To achieve this, we developed the Scaffold-supported Platform for Organoid-based Tissues (SPOT) platform. SPOT is a 3D gel-embedded in vitro platform that can be produced in a 96- or 384-well plate format and enables the generation of flat, thin, and dimensionally-defined microgels. SPOT has high potential for adoption due to its reproducible manufacturing methodology, compatibility with existing instrumentation, and reduced within-sample and between-sample variation, which can pose challenges to both data analysis and interpretation. Using SPOT, we generate cultures from patient derived pancreatic ductal adenocarcinoma organoids and assess the cellular response to standard-of-care chemotherapeutic compounds, demonstrating our platform's usability for drug screening. We envision 96/384-SPOT will provide a useful tool to assess drug sensitivity of patient-derived organoids and easily integrate into the drug discovery pipeline.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Organoides/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Descoberta de Drogas , Microambiente TumoralRESUMO
Obesity prevalence has reached pandemic proportions, leaving individuals at high risk for the development of diseases such as cancer and type 2 diabetes. In obesity, to accommodate excess lipid storage, adipocytes become hypertrophic, which is associated with an increased pro-inflammatory cytokine secretion and dysfunction of metabolic processes such as insulin signaling and lipolysis. Targeting adipocyte dysfunction is an important strategy to prevent the development of obesity-associated disease. However, it is unclear how accurately animal models reflect human biology, and the long-term culture of human hypertrophic adipocytes in anin vitro2D monolayer is challenging due to the buoyant nature of adipocytes. Here we describe the development of a human 3Din vitrodisease model that recapitulates hallmarks of obese adipocyte dysfunction. First, primary human adipose-derived mesenchymal stromal cells are embedded in hydrogel, and infiltrated into a thin cellulose scaffold. The thin microtissue profile allows for efficient assembly and image-based analysis. After adipocyte differentiation, the scaffold is stimulated with oleic or palmitic acid to mimic caloric overload. Using functional assays, we demonstrated that this treatment induced important obese adipocyte characteristics such as a larger lipid droplet size, increased basal lipolysis, insulin resistance and a change in macrophage gene expression through adipocyte-conditioned media. This 3D disease model mimics physiologically relevant hallmarks of obese adipocytes, to enable investigations into the mechanisms by which dysfunctional adipocytes contribute to disease.
Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos , Adipócitos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Humanos , Lipólise , Obesidade/complicações , Obesidade/metabolismoRESUMO
Protein purification is a ubiquitous procedure in biochemistry and the life sciences, and represents a key step in the protein production pipeline. The need for scalable and parallel protein purification systems is driven by the demands for increasing the throughput of recombinant protein characterization. Therefore, automating the process to simultaneously handle multiple samples with minimal human intervention is highly desirable, yet there are only a handful of such systems that have been developed, all of which are closed source and expensive. To address this challenge, we present REVOLVER, a 3D-printed programmable protein purification system based on gravity-column workflows and controlled by Arduino boards that can be built for under $130 USD. REVOLVER takes a cell lysate sample and completes a full protein purification process with almost no human intervention and yields results indistinguishable from those obtained by an experienced biochemist when purifying a real-world protein sample. We further present and describe MULTI-VOLVER, a scalable version of the REVOLVER that allows for parallel purification of up to six samples and can be built for under $250 USD. Both systems can help accelerate protein purification and ultimately link them to bio-foundries for protein characterization and engineering.
RESUMO
Patient-derived tumor organoids (PDOs) are a highly promising preclinical model that recapitulates the histology, gene expression, and drug response of the donor patient tumor. Currently, PDO culture relies on basement-membrane extract (BME), which suffers from batch-to-batch variability, the presence of xenogeneic compounds and residual growth factors, and poor control of mechanical properties. Additionally, for the development of new organoid lines from patient-derived xenografts, contamination of murine host cells poses a problem. We propose a nanofibrillar hydrogel (EKGel) for the initiation and growth of breast cancer PDOs. PDOs grown in EKGel have histopathologic features, gene expression, and drug response that are similar to those of their parental tumors and PDOs in BME. In addition, EKGel offers reduced batch-to-batch variability, a range of mechanical properties, and suppressed contamination from murine cells. These results show that EKGel is an improved alternative to BME matrices for the initiation, growth, and maintenance of breast cancer PDOs.
Assuntos
Neoplasias da Mama , Organoides , Animais , Biomimética , Neoplasias da Mama/patologia , Feminino , Humanos , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Camundongos , Organoides/metabolismoRESUMO
Tumors contain heterogeneous and dynamic populations of cells that do not all display the fast-proliferating properties that traditional chemotherapies target. There is a need therefore, to develop novel treatment strategies that target diverse tumor cell properties. Identifying therapy combinations is challenging however. Current approaches have relied on cell lines cultured in monolayers with treatment response being assessed using endpoint metabolic assays, which although enable large-scale throughput, do not capture tumor heterogeneity. Here, a 3D in vitro tumor model using micro-molded hydrogels (microgels), the Gels for Live Analysis of Compartmentalized Environments (GLAnCE) platform, is adapted into a 96-well plate format (96-GLAnCE) that integrates patient-derived organoids (PDOs) and is combined with longitudinal automated imaging to address these limitations. Using 96-GLAnCE, two measures of tumor aggressiveness are quantified, tumor cell growth and in situ regrowth after drug treatment, in both cell lines and PDOs. The use of longitudinal image-based readouts enables the identification of tumor cell phenotypes with cell population and subpopulation resolution that cannot be detected by standard bulk-soluble assays. 96-GLAnCE is a versatile and robust platform that combines 3D-ECM based models, PDOs, and real-time assay readouts, to provide an additional tool for pre-clinical anti-cancer drug discovery for the identification of novel targets with translatable clinical significance.
Assuntos
Antineoplásicos , Microgéis , Neoplasias , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Humanos , Neoplasias/patologia , Organoides/metabolismoRESUMO
The aryl hydrocarbon receptor (AhR) is a sensor of products of tryptophan metabolism and a potent modulator of immunity. Here, we examined the impact of AhR in tumor-associated macrophage (TAM) function in pancreatic ductal adenocarcinoma (PDAC). TAMs exhibited high AhR activity and Ahr-deficient macrophages developed an inflammatory phenotype. Deletion of Ahr in myeloid cells or pharmacologic inhibition of AhR reduced PDAC growth, improved efficacy of immune checkpoint blockade, and increased intra-tumoral frequencies of IFNγ+CD8+ T cells. Macrophage tryptophan metabolism was not required for this effect. Rather, macrophage AhR activity was dependent on Lactobacillus metabolization of dietary tryptophan to indoles. Removal of dietary tryptophan reduced TAM AhR activity and promoted intra-tumoral accumulation of TNFα+IFNγ+CD8+ T cells; provision of dietary indoles blocked this effect. In patients with PDAC, high AHR expression associated with rapid disease progression and mortality, as well as with an immune-suppressive TAM phenotype, suggesting conservation of this regulatory axis in human disease.
Assuntos
Tolerância Imunológica/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Triptofano/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Humanos , Indóis/imunologia , Indóis/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Microbiota/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismoRESUMO
Topographical cues are known to influence cell organization both in native tissues and in vitro. In the trachea, the matrix beneath the epithelial lining is composed of collagen fibres that run along the long axis of the airway. Previous studies have shown that grooved topography can induce morphological and cytoskeletal alignment in epithelial cell lines. In the present work we assessed the impact of substrate topography on the organization of primary human tracheal epithelial cells (HTECs) and human induced pluripotent stem cell (hiPSC)-derived airway progenitors and the resulting alignment of cilia after maturation of the airway cells under Air-Liquid-Interface (ALI) culture. Grooves with optimized dimensions were imprinted into collagen vitrigel membranes (CVM) to produce gel inserts for ALI culture. Grooved CVM substrates induced cell alignment in HTECs and hiPSC airway progenitors in submerged culture. Further, both cell types were able to terminally differentiate into a multi-ciliated epithelium on both flat and groove CVM substrates. When exposed to ALI conditions, HTECs lost alignment after 14 days. Meanwhile, hiPSC-derived airway progenitors maintained their alignment throughout 31 days of ALI culture. Interestingly, neither initial alignment on the grooves, nor maintained alignment on the grooves induced alignment of cilia basal bodies, an indication of the direction of ciliary beating direction in the airway cells. Planar organization of airway cells during or prior to ciliogenesis therefore does not appear to be a feasible strategy to control cilia organization and subsequent airway epithelial function and additional cues are likely necessary to produce cilia alignment.
Assuntos
Hidrogéis , Células-Tronco Pluripotentes Induzidas , Células Cultivadas , Cílios , Células Epiteliais , Epitélio , HumanosRESUMO
One of the obstacles limiting progress in the development of effective cancer therapies is the shortage of preclinical models that capture the dynamic nature of tumor microenvironments. Interstitial flow strongly impacts tumor response to chemotherapy; however, conventional in vitro cancer models largely disregard this key feature. Here, a proof of principle microfluidic platform for the generation of large arrays of breast tumor spheroids that are grown under close-to-physiological flow in a biomimetic hydrogel is reported. This cancer spheroids-on-a-chip model is used for time- and labor-efficient studies of the effects of drug dose and supply rate on the chemosensitivity of breast tumor spheroids. The capability to grow large arrays of tumor spheroids from patient-derived cells of different breast cancer subtypes is shown, and the correlation between in vivo drug efficacy and on-chip spheroid drug response is demonstrated. The proposed platform can serve as an in vitro preclinical model for the development of personalized cancer therapies and effective screening of new anticancer drugs.
Assuntos
Neoplasias da Mama , Microfluídica , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Feminino , Humanos , Esferoides Celulares , Microambiente TumoralRESUMO
Chemically directed differentiation of pluripotent stem cells (PSCs) into defined cell types is a potent strategy for creating regenerative tissue models and cell therapies. In vitro observations suggest that physical cues can augment directed differentiation. We recently demonstrated that confining human PSC-derived lung progenitor cells in a tube with a diameter that mimics those observed during lung development results in the alteration of cell differentiation towards SOX2-SOX9+ lung cells. Here we set out to assess the robustness of this geometric confinement effect with respect to different culture parameters in order to explore the corresponding changes in cell morphometry and determine the feasibility of using such an approach to enhance directed differentiation protocols. Culture of progenitor cells in polydimethylsiloxane (PDMS) tubes reliably induced self-organization into tube structures and was insensitive to a variety of extracellular matrix coatings. Cellular morphology and differentiation status were found to be sensitive to the diameter of tube cells that were cultured within but not to seeding density. These data suggest that geometric cues impose constraints on cells, homogenize cellular morphology, and influence fate status.
RESUMO
Cell competition is defined as the context-dependent elimination of cells that is mediated by intercellular communication, such as paracrine or contact-dependent cell signaling, and/or mechanical stresses. It is considered to be a quality control mechanism that facilitates the removal of suboptimal cells from both adult and embryonic tissues. Cell competition, however, can also be hijacked by transformed cells to acquire a 'super-competitor' status and outcompete the normal epithelium to establish a precancerous field. To date, many genetic drivers of cell competition have been identified predominately through studies in Drosophila. Especially during the last couple of years, ethylmethanesulfonate-based genetic screens have been instrumental to our understanding of the molecular regulators behind some of the most common competition mechanisms in Drosophila, namely competition due to impaired ribosomal function (or anabolism) and mechanical sensitivity. Despite recent findings in Drosophila and in mammalian models of cell competition, the drivers of mammalian cell competition remain largely elusive. Since the discovery of CRISPR/Cas9, its use in functional genomics has been indispensable to uncover novel cancer vulnerabilities. We envision that CRISPR/Cas9 screens will enable systematic, genome-scale probing of mammalian cell competition to discover novel mutations that not only trigger cell competition but also identify novel molecular components that are essential for the recognition and elimination of less fit cells. In this review, we summarize recent contributions that further our understanding of the molecular mechanisms of cell competition by genetic screening in Drosophila, and provide our perspective on how similar and novel screening strategies made possible by whole-genome CRISPR/Cas9 screening can advance our understanding of mammalian cell competition in the future.