Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38771459

RESUMO

Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.

3.
Eur J Heart Fail ; 26(1): 46-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702310

RESUMO

AIMS: To examine the relevance of genetic and cardiovascular magnetic resonance (CMR) features of dilated cardiomyopathy (DCM) in individuals with coronary artery disease (CAD). METHODS AND RESULTS: This study includes two cohorts. First, individuals with CAD recruited into the UK Biobank (UKB) were evaluated. Second, patients with CAD referred to a tertiary centre for evaluation with late gadolinium enhancement (LGE)-CMR were recruited (London cohort); patients underwent genetic sequencing as part of the research protocol and long-term follow-up. From 31 154 individuals with CAD recruited to UKB, rare pathogenic variants in DCM genes were associated with increased risk of death or major adverse cardiac events (hazard ratio 1.57, 95% confidence interval [CI] 1.22-2.01, p < 0.001). Of 1619 individuals with CAD included from the UKB CMR substudy, participants with a rare variant in a DCM-associated gene had lower left ventricular ejection fraction (LVEF) compared to genotype negative individuals (mean 47 ± 10% vs. 57 ± 8%, p < 0.001). Of 453 patients in the London cohort, 63 (14%) had non-infarct pattern LGE (NI-LGE) on CMR. Patients with NI-LGE had lower LVEF (mean 38 ± 18% vs. 48 ± 16%, p < 0.001) compared to patients without NI-LGE, with no significant difference in the burden of rare protein altering variants in DCM-associated genes between groups (9.5% vs. 6.7%, odds ratio 1.5, 95% CI 0.4-4.3, p = 0.4). NI-LGE was not independently associated with adverse clinical outcomes. CONCLUSION: Rare pathogenic variants in DCM-associated genes impact left ventricular remodelling and outcomes in stable CAD. NI-LGE is associated with adverse remodelling but is not an independent predictor of outcome and had no rare genetic basis in our study.


Assuntos
Cardiomiopatia Dilatada , Doença da Artéria Coronariana , Insuficiência Cardíaca , Humanos , Cardiomiopatia Dilatada/complicações , Volume Sistólico , Meios de Contraste , Função Ventricular Esquerda , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/complicações , Gadolínio , Valor Preditivo dos Testes , Imagem Cinética por Ressonância Magnética
4.
Circ Genom Precis Med ; 16(6): e004200, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014537

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is an important cause of sudden cardiac death associated with heterogeneous phenotypes, but there is no systematic framework for classifying morphology or assessing associated risks. Here, we quantitatively survey genotype-phenotype associations in HCM to derive a data-driven taxonomy of disease expression. METHODS: We enrolled 436 patients with HCM (median age, 60 years; 28.8% women) with clinical, genetic, and imaging data. An independent cohort of 60 patients with HCM from Singapore (median age, 59 years; 11% women) and a reference population from the UK Biobank (n=16 691; mean age, 55 years; 52.5% women) were also recruited. We used machine learning to analyze the 3-dimensional structure of the left ventricle from cardiac magnetic resonance imaging and build a tree-based classification of HCM phenotypes. Genotype and mortality risk distributions were projected on the tree. RESULTS: Carriers of pathogenic or likely pathogenic variants for HCM had lower left ventricular mass, but greater basal septal hypertrophy, with reduced life span (mean follow-up, 9.9 years) compared with genotype negative individuals (hazard ratio, 2.66 [95% CI, 1.42-4.96]; P<0.002). Four main phenotypic branches were identified using unsupervised learning of 3-dimensional shape: (1) nonsarcomeric hypertrophy with coexisting hypertension; (2) diffuse and basal asymmetrical hypertrophy associated with outflow tract obstruction; (3) isolated basal hypertrophy; and (4) milder nonobstructive hypertrophy enriched for familial sarcomeric HCM (odds ratio for pathogenic or likely pathogenic variants, 2.18 [95% CI, 1.93-2.28]; P=0.0001). Polygenic risk for HCM was also associated with different patterns and degrees of disease expression. The model was generalizable to an independent cohort (trustworthiness, M1: 0.86-0.88). CONCLUSIONS: We report a data-driven taxonomy of HCM for identifying groups of patients with similar morphology while preserving a continuum of disease severity, genetic risk, and outcomes. This approach will be of value in understanding the causes and consequences of disease diversity.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Cardiomiopatia Hipertrófica , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Fenótipo , Genótipo , Hipertrofia/complicações
5.
Nat Commun ; 14(1): 4941, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604819

RESUMO

Cardiovascular ageing is a process that begins early in life and leads to a progressive change in structure and decline in function due to accumulated damage across diverse cell types, tissues and organs contributing to multi-morbidity. Damaging biophysical, metabolic and immunological factors exceed endogenous repair mechanisms resulting in a pro-fibrotic state, cellular senescence and end-organ damage, however the genetic architecture of cardiovascular ageing is not known. Here we use machine learning approaches to quantify cardiovascular age from image-derived traits of vascular function, cardiac motion and myocardial fibrosis, as well as conduction traits from electrocardiograms, in 39,559 participants of UK Biobank. Cardiovascular ageing is found to be significantly associated with common or rare variants in genes regulating sarcomere homeostasis, myocardial immunomodulation, and tissue responses to biophysical stress. Ageing is accelerated by cardiometabolic risk factors and we also identify prescribed medications that are potential modifiers of ageing. Through large-scale modelling of ageing across multiple traits our results reveal insights into the mechanisms driving premature cardiovascular ageing and reveal potential molecular targets to attenuate age-related processes.


Assuntos
Senilidade Prematura , Envelhecimento , Humanos , Envelhecimento/genética , Eletrocardiografia , Senescência Celular , Miocárdio
6.
Am J Hum Genet ; 110(9): 1482-1495, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37652022

RESUMO

Understanding the penetrance of pathogenic variants identified as secondary findings (SFs) is of paramount importance with the growing availability of genetic testing. We estimated penetrance through large-scale analyses of individuals referred for diagnostic sequencing for hypertrophic cardiomyopathy (HCM; 10,400 affected individuals, 1,332 variants) and dilated cardiomyopathy (DCM; 2,564 affected individuals, 663 variants), using a cross-sectional approach comparing allele frequencies against reference populations (293,226 participants from UK Biobank and gnomAD). We generated updated prevalence estimates for HCM (1:543) and DCM (1:220). In aggregate, the penetrance by late adulthood of rare, pathogenic variants (23% for HCM, 35% for DCM) and likely pathogenic variants (7% for HCM, 10% for DCM) was substantial for dominant cardiomyopathy (CM). Penetrance was significantly higher for variant subgroups annotated as loss of function or ultra-rare and for males compared to females for variants in HCM-associated genes. We estimated variant-specific penetrance for 316 recurrent variants most likely to be identified as SFs (found in 51% of HCM- and 17% of DCM-affected individuals). 49 variants were observed at least ten times (14% of affected individuals) in HCM-associated genes. Median penetrance was 14.6% (±14.4% SD). We explore estimates of penetrance by age, sex, and ancestry and simulate the impact of including future cohorts. This dataset reports penetrance of individual variants at scale and will inform the management of individuals undergoing genetic screening for SFs. While most variants had low penetrance and the costs and harms of screening are unclear, some individuals with highly penetrant variants may benefit from SFs.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Feminino , Masculino , Humanos , Adulto , Penetrância , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Frequência do Gene
7.
Open Heart ; 10(1)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37137668

RESUMO

BACKGROUND: Structural changes caused by spinal curvature may impact the organs within the thoracic cage, including the heart. Cardiac abnormalities in patients with idiopathic scoliosis are often studied post-corrective surgery or secondary to diseases. To investigate cardiac structure, function and outcomes in participants with scoliosis, phenotype and imaging data of the UK Biobank (UKB) adult population cohort were analysed. METHODS: Hospital episode statistics of 502 324 adults were analysed to identify participants with scoliosis. Summary 2D cardiac phenotypes from 39 559 cardiac MRI (CMR) scans were analysed alongside a 3D surface-to-surface (S2S) analysis. RESULTS: A total of 4095 (0.8%, 1 in 120) UKB participants were identified to have all-cause scoliosis. These participants had an increased lifetime risk of major adverse cardiovascular events (MACEs) (HR=1.45, p<0.001), driven by heart failure (HR=1.58, p<0.001) and atrial fibrillation (HR=1.54, p<0.001). Increased radial and decreased longitudinal peak diastolic strain rates were identified in participants with scoliosis (+0.29, Padj <0.05; -0.25, Padj <0.05; respectively). Cardiac compression of the top and bottom of the heart and decompression of the sides was observed through S2S analysis. Additionally, associations between scoliosis and older age, female sex, heart failure, valve disease, hypercholesterolemia, hypertension and decreased enrolment for CMR were identified. CONCLUSION: The spinal curvature observed in participants with scoliosis alters the movement of the heart. The association with increased MACE may have clinical implications for whether to undertake surgical correction. This work identifies, in an adult population, evidence for altered cardiac function and an increased lifetime risk of MACE in participants with scoliosis.


Assuntos
Doenças Cardiovasculares , Coração , Escoliose , Escoliose/epidemiologia , Humanos , Coração/fisiologia , Reino Unido/epidemiologia , Insuficiência Cardíaca/epidemiologia , Doenças Cardiovasculares/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Prevalência , Fibrilação Atrial/epidemiologia
8.
medRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778260

RESUMO

Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. We here report results from the largest HCM genome-wide association study (GWAS) and multi-trait analysis (MTAG) including 5,900 HCM cases, 68,359 controls, and 36,083 UK Biobank (UKB) participants with cardiac magnetic resonance (CMR) imaging. We identified a total of 70 loci (50 novel) associated with HCM, and 62 loci (32 novel) associated with relevant left ventricular (LV) structural or functional traits. Amongst the common variant HCM loci, we identify a novel HCM disease gene, SVIL, which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants cause HCM. Mendelian randomization analyses support a causal role of increased LV contractility in both obstructive and non-obstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, the findings significantly increase our understanding of the genetic basis and molecular mechanisms of HCM, with potential implications for disease management.

9.
Circulation ; 147(1): 47-65, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36325906

RESUMO

BACKGROUND: The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS: We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS: Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS: These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.


Assuntos
Doença da Válvula Aórtica Bicúspide , Cardiomiopatias , Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Cardiopatias Congênitas/complicações , Cardiomiopatias/etiologia , Miócitos Cardíacos , Valva Aórtica/diagnóstico por imagem , Fatores de Transcrição , Proteínas Cromossômicas não Histona
10.
Wellcome Open Res ; 7: 9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855073

RESUMO

Background: Taurine, 2-aminoethanesulfonic acid, is an amino acid found in animal products. Taurine is produced for human consumption as a supplement and ingredient in beverages. Supplementation is a safe, inexpensive, and effective treatment for dilated cardiomyopathy (DCM) in domestic mammals, however it is currently unlicensed in Europe and the United States for human medical treatment. Recent genome-wide association studies of DCM have identified the locus of the taurine transporter ( SLC6A6). To assess whether taurine supplementation may be a novel therapeutic option for DCM, we undertook a systematic review. Methods: Four electronic databases (PubMed, Cochrane Central Register, Web of Science, Biomed Central) were searched until 11/03/21. Included studies of human participants reported measured phenotypes or symptoms for cardiomyopathy, heart failure (HF), or altered left ventricle structure or function, administering taurine in any formulation, by any method. Non-English articles were excluded. Meta-analysis was completed in R software (version 3.6.0). The Newcastle-Ottawa Scale quality assessment score (NOQAS) tool was used to assess bias. Results: 285 articles were identified, of which eleven met our criteria for inclusion. Only one paper was deemed "high quality" using the NOQAS tool. Taurine supplementation varied across studies; by dose (500 mg to 6g per day), frequency (once to thrice daily), delivery method (tablet, capsule, drink, powder), and duration (2 to 48 weeks). Patient inclusion was all-cause HF patients with ejection fraction (EF) <50% and no study was specific to DCM. While improvements in diastolic and systolic function, exercise capacity, and haemodynamic parameters were described, only EF and stroke volume were measured in enough studies to complete a meta-analysis; the association was not significant with all-cause HF (P<0.05). No significant safety concerns were reported. Conclusions: A formal clinical trial is needed to address whether taurine supplementation is beneficial to the approximately 1/250 individuals with DCM in the population.

12.
Nat Cardiovasc Res ; 1(4): 361-371, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35479509

RESUMO

Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wide association study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomeric function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent predictors of diastolic function and we found a causal relationship between genetically-determined ventricular stiffness and incident heart failure. Our results provide insights into the genetic and environmental factors influencing diastolic function that are relevant for identifying causal relationships and potential tractable targets.

13.
Prostaglandins Other Lipid Mediat ; 160: 106638, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35472599

RESUMO

Estimates of heritability are the first step in identifying a trait with substantial variation due to genetic factors. Large-scale genetic analyses can identify the DNA variants that influence the levels of circulating lipid species and the statistical technique Mendelian randomisation can use these DNA variants to address potential causality of these lipids in disease. We estimated the heritability of plasma eicosanoids, octadecanoids and docosanoids to identify those lipid species with substantial heritability. We analysed plasma lipid mediators in 31 White British families (196 participants) ascertained for high blood pressure and deeply clinically and biochemically phenotyped over a 25-year period. We found that the dihydroxyeicosatrienoic acid (DHET) species, 11,12-DHET and 14,15-DHET, products of arachidonic acid metabolism by cytochrome P450 (CYP) monooxygenase and soluble epoxide hydrolase (sEH), exhibited substantial heritability (h2 = 33%-37%; Padj<0.05). Identification of these two heritable bioactive lipid species allows for future large-scale, targeted, lipidomics-genomics analyses to address causality in cardiovascular and other diseases.


Assuntos
Eicosanoides , Epóxido Hidrolases , Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/sangue , Eicosanoides/metabolismo , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Humanos , Lipidômica , Fenótipo
15.
J Am Coll Cardiol ; 78(11): 1097-1110, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34503678

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomere-encoding genes, but little is known about the clinical significance of these variants in the general population. OBJECTIVES: The goal of this study was to compare lifetime outcomes and cardiovascular phenotypes according to the presence of rare variants in sarcomere-encoding genes among middle-aged adults. METHODS: This study analyzed whole exome sequencing and cardiac magnetic resonance imaging in UK Biobank participants stratified according to sarcomere-encoding variant status. RESULTS: The prevalence of rare variants (allele frequency <0.00004) in HCM-associated sarcomere-encoding genes in 200,584 participants was 2.9% (n = 5,712; 1 in 35), and the prevalence of variants pathogenic or likely pathogenic for HCM (SARC-HCM-P/LP) was 0.25% (n = 493; 1 in 407). SARC-HCM-P/LP variants were associated with an increased risk of death or major adverse cardiac events compared with controls (hazard ratio: 1.69; 95% confidence interval [CI]: 1.38-2.07; P < 0.001), mainly due to heart failure endpoints (hazard ratio: 4.23; 95% CI: 3.07-5.83; P < 0.001). In 21,322 participants with both cardiac magnetic resonance imaging and whole exome sequencing, SARC-HCM-P/LP variants were associated with an asymmetric increase in left ventricular maximum wall thickness (10.9 ± 2.7 mm vs 9.4 ± 1.6 mm; P < 0.001), but hypertrophy (≥13 mm) was only present in 18.4% (n = 9 of 49; 95% CI: 9%-32%). SARC-HCM-P/LP variants were still associated with heart failure after adjustment for wall thickness (hazard ratio: 6.74; 95% CI: 2.43-18.7; P < 0.001). CONCLUSIONS: In this population of middle-aged adults, SARC-HCM-P/LP variants have low aggregate penetrance for overt HCM but are associated with an increased risk of adverse cardiovascular outcomes and an attenuated cardiomyopathic phenotype. Although absolute event rates are low, identification of these variants may enhance risk stratification beyond familial disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Sarcômeros/genética , Idoso , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Estudos de Coortes , Aprendizado Profundo , Feminino , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Penetrância , Fenótipo
16.
Atherosclerosis ; 327: 18-30, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34004484

RESUMO

There is a need for new biomarkers of atherosclerotic cardiovascular disease (ACVD), the main cause of death globally. Ceramides, a class of potent bioactive lipid mediators, have signalling roles in apoptosis, cellular stress and inflammation. Recent studies have highlighted circulating ceramides as novel biomarkers of coronary artery disease, type-2 diabetes and insulin resistance. Ceramides are highly regulated by enzymatic reactions throughout the body in terms of their activity and metabolism, including production, degradation and transport. The genetic studies that have been completed to date on the main ceramide species found in circulation are described, highlighting the importance of DNA variants in genes involved in ceramide biosynthesis as key influencers of heritable, circulating ceramide levels. We also review studies of disease associations with ceramides and discuss mechanistic insights deriving from recent genomic studies. The signalling activities of ceramides in vascular inflammation and apoptosis, associations between circulating ceramides and coronary artery disease risk, type-2 diabetes and insulin resistance, and the potential importance of ceramides with regard to ACVD risk factors, such as blood pressure, lipoproteins and lifestyle factors, are also discussed.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Biomarcadores , Ceramidas , Genômica , Humanos
17.
Hum Mol Genet ; 30(6): 500-513, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33437986

RESUMO

Signalling lipids of the N-acyl ethanolamine (NAE) and ceramide (CER) classes have emerged as potential biomarkers of cardiovascular disease (CVD). We sought to establish the heritability of plasma NAEs (including the endocannabinoid anandamide) and CERs, to identify common DNA variants influencing the circulating concentrations of the heritable lipids, and assess causality of these lipids in CVD using 2-sample Mendelian randomization (2SMR). Nine NAEs and 16 CERs were analyzed in plasma samples from 999 members of 196 British Caucasian families, using targeted ultra-performance liquid chromatography with tandem mass spectrometry. All lipids were significantly heritable (h2 = 36-62%). A missense variant (rs324420) in the gene encoding the enzyme fatty acid amide hydrolase (FAAH), which degrades NAEs, associated at genome-wide association study (GWAS) significance (P < 5 × 10-8) with four NAEs (DHEA, PEA, LEA and VEA). For CERs, rs680379 in the SPTLC3 gene, which encodes a subunit of the rate-limiting enzyme in CER biosynthesis, associated with a range of species (e.g. CER[N(24)S(19)]; P = 4.82 × 10-27). We observed three novel associations between SNPs at the CD83, SGPP1 and DEGS1 loci, and plasma CER traits (P < 5 × 10-8). 2SMR in the CARDIoGRAMplusC4D cohorts (60 801 cases; 123 504 controls) and in the DIAGRAM cohort (26 488 cases; 83 964 controls), using the genetic instruments from our family-based GWAS, did not reveal association between genetically determined differences in CER levels and CVD or diabetes. Two of the novel GWAS loci, SGPP1 and DEGS1, suggested a casual association between CERs and a range of haematological phenotypes, through 2SMR in the UK Biobank, INTERVAL and UKBiLEVE cohorts (n = 110 000-350 000).


Assuntos
Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Ceramidas/sangue , Etanolaminas/sangue , Predisposição Genética para Doença , Lipidômica/métodos , Polimorfismo de Nucleotídeo Único , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Estudos de Casos e Controles , Ceramidas/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade
18.
Genet Med ; 23(5): 856-864, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33500567

RESUMO

PURPOSE: To characterize the genetic architecture of left ventricular noncompaction (LVNC) and investigate the extent to which it may represent a distinct pathology or a secondary phenotype associated with other cardiac diseases. METHODS: We performed rare variant association analysis with 840 LVNC cases and 125,748 gnomAD population controls, and compared results to similar analyses on dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). RESULTS: We observed substantial genetic overlap indicating that LVNC often represents a phenotypic variation of DCM or HCM. In contrast, truncating variants in MYH7, ACTN2, and PRDM16 were uniquely associated with LVNC and may reflect a distinct LVNC etiology. In particular, MYH7 truncating variants (MYH7tv), generally considered nonpathogenic for cardiomyopathies, were 20-fold enriched in LVNC cases over controls. MYH7tv heterozygotes identified in the UK Biobank and healthy volunteer cohorts also displayed significantly greater noncompaction compared with matched controls. RYR2 exon deletions and HCN4 transmembrane variants were also enriched in LVNC, supporting prior reports of association with arrhythmogenic LVNC phenotypes. CONCLUSION: LVNC is characterized by substantial genetic overlap with DCM/HCM but is also associated with distinct noncompaction and arrhythmia etiologies. These results will enable enhanced application of LVNC genetic testing and help to distinguish pathological from physiological noncompaction.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Cardiopatias Congênitas , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Testes Genéticos , Humanos
19.
Sci Rep ; 10(1): 14356, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873833

RESUMO

Blood flow in the vasculature can be characterised by dimensionless numbers commonly used to define the level of instabilities in the flow, for example the Reynolds number, Re. Haemodynamics play a key role in cardiovascular disease (CVD) progression. Genetic studies have identified mechanosensitive genes with causal roles in CVD. Given that CVD is highly heritable and abnormal blood flow may increase risk, we investigated the heritability of fluid metrics in the ascending aorta calculated using patient-specific data from cardiac magnetic resonance (CMR) imaging. 341 participants from 108 British Caucasian families were phenotyped by CMR and genotyped for 557,124 SNPs. Flow metrics were derived from the CMR images to provide some local information about blood flow in the ascending aorta, based on maximum values at systole at a single location, denoted max, and a 'peak mean' value averaged over the area of the cross section, denoted pm. Heritability was estimated using pedigree-based (QTDT) and SNP-based (GCTA-GREML) methods. Estimates of Reynolds number based on spatially averaged local flow during systole showed substantial heritability ([Formula: see text], [Formula: see text]), while the estimated heritability for Reynolds number calculated using the absolute local maximum velocity was not statistically significant (12-13%; [Formula: see text]). Heritability estimates of the geometric quantities alone; e.g. aortic diameter ([Formula: see text], [Formula: see text]), were also substantially heritable, as described previously. These findings indicate the potential for the discovery of genetic factors influencing haemodynamic traits in large-scale genotyped and phenotyped cohorts where local spatial averaging is used, rather than instantaneous values. Future Mendelian randomisation studies of aortic haemodynamic estimates, which are swift to derive in a clinical setting, will allow for the investigation of causality of abnormal blood flow in CVD.


Assuntos
Aorta/diagnóstico por imagem , Aorta/fisiopatologia , Anormalidades Cardiovasculares/genética , Predisposição Genética para Doença/genética , Hemodinâmica/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Velocidade do Fluxo Sanguíneo , Estudos de Coortes , Feminino , Técnicas de Genotipagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA