Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 8(1): 76, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674581

RESUMO

The Buzzards Bay Coalition's Baywatchers Monitoring Program (Baywatchers) collected summertime water quality information at more than 150 stations around Buzzards Bay, Massachusetts from 1992 to 2018. Baywatchers documents nutrient-related water quality and the effects of nitrogen pollution. The large majority of stations are located in sub-estuaries of the main Bay, although stations in central Buzzards Bay and Vineyard Sound were added beginning in 2007. Measurements include temperature, salinity, Secchi depth and concentrations of dissolved oxygen, ammonium, nitrate + nitrite, total dissolved nitrogen, particulate organic nitrogen, particulate organic carbon, ortho-phosphate, chlorophyll a, pheophytin a, and in lower salinity waters, total phosphorus and dissolved organic carbon. The Baywatchers dataset provides a long-term record of the water quality of Buzzards Bay and its sub-estuaries. The data have been used to identify impaired waters, evaluate discharge permits, support the development of nitrogen total maximum daily loads, develop strategies for reducing nitrogen inputs, and increase public awareness and generate support for management actions to control nutrient pollution and improve water quality.

2.
Sci Rep ; 8(1): 13478, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194382

RESUMO

Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (N2O) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions. We quantified fertilizer responses of maize yield, N2O emissions, and N leaching in an Amazon soybean-maize double-cropping system on deep, highly-weathered soils in Mato Grosso, Brazil. Application of N fertilizer above 80 kg N ha-1 yr-1 increased maize yield and N2O emissions only slightly. Unlike experiences in temperate regions, leached nitrate accumulated in deep soils with increased fertilizer and conversion to cropping at N fertilization rates >80 kg N ha-1, which exceeded maize demand. This raises new questions about the capacity of tropical agricultural soils to store nitrogen, which may determine when and how much nitrogen impacts surface waters.


Assuntos
Produção Agrícola , Fertilizantes , Glycine max/crescimento & desenvolvimento , Nitrogênio , Solo/química , Zea mays/crescimento & desenvolvimento , Brasil , Nitrogênio/química , Nitrogênio/farmacologia
3.
Ecol Appl ; 27(1): 193-207, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052498

RESUMO

Intensive cropland agriculture commonly increases streamwater solute concentrations and export from small watersheds. In recent decades, the lowland tropics have become the world's largest and most important region of cropland expansion. Although the effects of intensive cropland agriculture on streamwater chemistry and watershed export have been widely studied in temperate regions, their effects in tropical regions are poorly understood. We sampled seven headwater streams draining watersheds in forest (n = 3) or soybeans (n = 4) to examine the effects of soybean cropping on stream solute concentrations and watershed export in a region of rapid soybean expansion in the Brazilian state of Mato Grosso. We measured stream flows and concentrations of NO3- , PO43- , SO42- , Cl- , NH4+ , Ca2+ , Mg2+ , Na+ , K+ , Al3+ , Fe3+ , and dissolved organic carbon (DOC) biweekly to monthly to determine solute export. We also measured stormflows and stormflow solute concentrations in a subset of watersheds (two forest, two soybean) during two/three storms, and solutes and δ18 O in groundwater, rainwater, and throughfall to characterize watershed flowpaths. Concentrations of all solutes except K+ varied seasonally in streamwater, but only Fe3+ concentrations differed between land uses. The highest streamwater and rainwater solute concentrations occurred during the peak season of wildfires in Mato Grosso, suggesting that regional changes in atmospheric composition and deposition influence seasonal stream solute concentrations. Despite no concentration differences between forest and soybean land uses, annual export of NH4+ , PO43- , Ca2+ , Fe3+ , Na+ , SO42- , DOC, and TSS were significantly higher from soybean than forest watersheds (5.6-fold mean increase). This increase largely reflected a 4.3-fold increase in water export from soybean watersheds. Despite this increase, total solute export per unit watershed area (i.e., yield) remained low for all watersheds (<1 kg NO3- N·ha-1 ·yr-1 , <2.1 kg NH4+ -N·ha-1 ·yr-1 , <0.2 kg PO43- -P·ha-1 ·yr-1 , <1.5 kg Ca2+ ·ha-1 ·yr-1 ). Responses of both streamflows and solute concentrations to crop agriculture appear to be controlled by high soil hydraulic conductivity, groundwater-dominated hydrologic flowpaths on deep soils, and the absence of nitrogen fertilization. To date, these factors have buffered streams from the large increases in solute concentrations that often accompany intensive croplands in other locations.


Assuntos
Florestas , Sedimentos Geológicos/química , Glycine max , Rios/química , Agricultura , Brasil , Estações do Ano , Glycine max/crescimento & desenvolvimento
4.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120425, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23610178

RESUMO

The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales.


Assuntos
Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Qualidade da Água , Brasil , Conservação dos Recursos Naturais/métodos , Ecossistema , Hidrologia , Nitratos/química , Fósforo/química , Rios/química , Solo/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA