RESUMO
Multiyear investigations of population dynamics are fundamental to threatened species conservation. We used multiseason occupancy based on spotlight surveys to investigate dynamic occupancy of the koala and the greater glider over an 8-year period that encompassed a severe drought in year 6. We combined our occupancy estimates with literature estimates of density to estimate the population sizes of these species within the focal conservation reserve. Both species showed substantial yearly variation in the probability of detection (koala: 0.13-0.24; greater glider: 0.12-0.36). Detection of the koala did not follow any obvious pattern. Low detection of the greater glider coincided with the drought and two subsequent years. We suggest the low detection reflected a decline in abundance. The probability of occupancy of the koala was estimated to be 0.88 (95% CI: 0.75-1.0) in year 8. Autonomous recording units were also used in year 8, enabling an independent occupancy estimate of 0.80 (0.64-0.90). We found no evidence of a drought-induced decline in the koala. Habitat variables had a weak influence on koala occupancy probabilities. The probability of occupancy of the greater glider changed little over time, from 0.52 (95% CI: 0.24-0.81) to 0.63 (0.42-0.85) in year 8. Modeling suggested that the probability of colonization was positively influenced by the percentage cover of rainforest. Increased cover of these nonbrowse trees may reflect thermal buffering, site productivity, or soil moisture. We estimate that our study reserve is likely to contain >900 adult koalas and >2400 adult greater gliders. These are among some of the first reserve-wide estimates for these species. Our study reserve can play an important role in the conservation of both species.
RESUMO
Australia has had the highest rate of mammal extinctions in the past two centuries when compared to other continents. Frequently cited threats include habitat loss and fragmentation, changed fire regimes and the impact of introduced predators, namely the red fox (Vulpes vulpes) and the feral cat (Felis catus). Recent studies suggest that Australia's top predator, the dingo (Canis dingo), may have a suppressive effect on fox populations but not on cat populations. The landscape of fear hypothesis proposes that habitat used by prey species comprises high to low risk patches for foraging as determined by the presence and ubiquity of predators within the ecosystem. This results in a landscape of risky versus safe areas for prey species. We investigated the influence of habitat and its interaction with predatory mammals on the occupancy of medium-sized mammals with a focus on threatened macropodid marsupials (the long-nosed potoroo [Potorous tridactylous] and red-legged pademelon [Thylogale stigmatica]). We assumed that differential use of habitats would reflect trade-offs between food and safety. We predicted that medium-sized mammals would prefer habitats for foraging that reduce the risk of predation but that predators would have a positive relationship with medium-sized mammals. We variously used data from 298 camera trap sites across nine conservation reserves in subtropical Australia. Both dingoes and feral cats were broadly distributed, whilst the red fox was rare. Long-nosed potoroos had a strong positive association with dense ground cover, consistent with using habitat complexity to escape predation. Red-legged pademelons showed a preference for open ground cover, consistent with a reliance on rapid bounding to escape predation. Dingoes preferred areas of open ground cover whereas feral cats showed no specific habitat preference. Dingoes were positively associated with long-nosed potoroos whilst feral cats were positively associated with red-legged pademelons. Our study highlights the importance of habitat structure to these threatened mammals and also the need for more detailed study of their interactions with their predators.