Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 11(43): 15533-15543, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37920800

RESUMO

Understanding the structure of hardwoods can permit better valorization of lignin by enabling the optimization of green, high-yield extraction protocols that preserve the structure of wood biopolymers. To that end, a mild protocol was applied for the extraction of lignin from ball-milled birch. This made it possible to understand the differences in the extractability of lignin in each extraction step. The fractions were extensively characterized using 1D and 2D nuclear magnetic resonance spectroscopy, size exclusion chromatography, and pyrolysis-gas chromatography-mass spectrometry. This comprehensive characterization highlighted that lignin populations extracted by warm water, alkali, and ionic liquid/ethanol diverged in structural features including subunit composition, interunit linkage content, and the abundance of oxidized moieties. Moreover, ether- and ester-type lignin-carbohydrate complexes were identified in the different extracts. Irrespective of whether natively present in the wood or artificially formed during extraction, these complexes play an important role in the extractability of lignin from ball-milled hardwood. Our results contribute to the further improvement of lignin extraction strategies, for both understanding lignin as present in the lignocellulosic matrix and for dedicated lignin valorization efforts.

2.
Plant Direct ; 7(6): e500, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37312800

RESUMO

In order to develop more economic uses of lignin, greater knowledge regarding its native structure is required. This can inform the development of optimized extraction methods that preserve desired structural properties. Current extraction methods alter the polymeric structure of lignin, leading to a loss of valuable structural groups or the formation of new non-native ones. In this study, Norway spruce (Picea abies) tissue-cultured cells that produce lignin extracellularly in a suspension medium were employed. This system enables the investigation of unaltered native lignin, as no physicochemical extraction steps are required. For the first time, this culture was used to investigate the interactions between lignin and xylan, a secondary cell wall hemicellulose, and to study the importance of lignin-carbohydrate complexes (LCCs) on the polymerization and final structure of extracellular lignin (ECL). This has enabled us to study the impact of xylan on monolignol composition and structure of the final lignin polymer. We find that the addition of xylan to the solid culture medium accelerates cell growth and impacts the ratio of monolignols in the lignin. However, the presence of xylan in the lignin polymerization environment does not significantly alter the structural properties of lignin as analyzed by two-dimensional nuclear magnetic resonance (NMR) spectroscopy and size exclusion chromatography (SEC). Nevertheless, our data indicate that xylan can act as a nucleation point, leading to more rapid lignin polymerization, an important insight into biopolymer interactions during cell wall synthesis in wood. Lignin structure and interactions with a secondary cell wall hemicellulose were investigated in a model cell culture: we found that the polymerization and final structure of lignin are altered when the hemicellulose is present during cell growth and monolignol production. The physicochemical interactions between lignin and xylan partly define the extractability and utility of native lignin in high value applications, so this work has implications for lignin extraction as well as fundamental plant biology.

3.
J Biol Chem ; 296: 100500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667545

RESUMO

The gut microbiota plays a central role in human health by enzymatically degrading dietary fiber and concomitantly excreting short chain fatty acids that are associated with manifold health benefits. The polysaccharide xylan is abundant in dietary fiber but noncarbohydrate decorations hinder efficient cleavage by glycoside hydrolases (GHs) and need to be addressed by carbohydrate esterases (CEs). Enzymes from carbohydrate esterase families 1 and 6 (CE1 and 6) perform key roles in xylan degradation by removing feruloyl and acetate decorations, yet little is known about these enzyme families especially with regard to their diversity in activity. Bacteroidetes bacteria are dominant members of the microbiota and often encode their carbohydrate-active enzymes in multigene polysaccharide utilization loci (PULs). Here we present the characterization of three CEs found in a PUL encoded by the gut Bacteroidete Dysgonomonas mossii. We demonstrate that the CEs are functionally distinct, with one highly efficient CE6 acetyl esterase and two CE1 enzymes with feruloyl esterase activities. One multidomain CE1 enzyme contains two CE1 domains: an N-terminal domain feruloyl esterase, and a C-terminal domain with minimal activity on model substrates. We present the structure of the C-terminal CE1 domain with the carbohydrate-binding module that bridges the two CE1 domains, as well as a complex of the same protein fragment with methyl ferulate. The investment of D. mossii in producing multiple CEs suggests that improved accessibility of xylan for GHs and cleavage of covalent polysaccharide-polysaccharide and lignin-polysaccharide bonds are important enzyme activities in the gut environment.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/enzimologia , Esterases/metabolismo , Microbioma Gastrointestinal , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Metabolismo dos Carboidratos , Humanos , Modelos Moleculares , Alinhamento de Sequência , Especificidade por Substrato
4.
Adv Appl Microbiol ; 110: 63-98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32386606

RESUMO

The secretion of extracellular enzymes by soil microbes is rate-limiting in the recycling of biomass. Fungi and bacteria compete and collaborate for nutrients in the soil, with wide ranging ecological impacts. Within soil microbiota, the Bacteroidetes tend to be a dominant phylum, just like in human and animal intestines. The Bacteroidetes thrive because of their ability to secrete diverse arrays of carbohydrate-active enzymes (CAZymes) that target the highly varied glycans in the soil. Bacteroidetes use an energy-saving system of genomic organization, whereby most of their CAZymes are grouped into Polysaccharide Utilization Loci (PULs). These loci enable high level production of specific CAZymes only when their substrate glycans are abundant in the local environment. This gives the Bacteroidetes a clear advantage over other species in the competitive soil environment, further enhanced by the phylum-specific Type IX Secretion System (T9SS). The T9SS is highly effective at secreting CAZymes and/or tethering them to the cell surface, and is tightly coupled to the ability to rapidly glide over solid surfaces, a connection that promotes an active hunt for nutrition. Although the soil Bacteroidetes are less well studied than human gut symbionts, research is uncovering important biochemical and physiological phenomena. In this review, we summarize the state of the art on research into the CAZymes secreted by soil Bacteroidetes in the contexts of microbial soil ecology and the discovery of novel CAZymes for use in industrial biotechnology. We hope that this review will stimulate further investigations into the somewhat neglected enzymology of non-gut Bacteroidetes.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/fisiologia , Locomoção/fisiologia , Polissacarídeos/metabolismo , Microbiologia do Solo , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Biodegradação Ambiental , Metabolismo Energético , Família Multigênica , Polissacarídeos/análise , Polissacarídeos/química , Solo/química
5.
Front Microbiol ; 11: 521, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296406

RESUMO

To develop more ecologically sustainable agricultural practices requires that we reduce our reliance on synthetic chemical pesticides for crop protection. This will likely involve optimized biocontrol approaches - the use of beneficial soil microbes to attack potential plant pathogens to protect plants from diseases. Many bacterial species, including strains of Bacillus subtilis, have been explored for their biocontrol properties, as they can control the growth of harmful fungi, often by disrupting the fungal cell wall. A strain that is not often considered for this particular application is Bacillus subtilis natto, primarily known for fermenting soybeans via cell wall degradation in the Japanese probiotic dish "natto." Because deconstruction of the fungal cell wall is considered an important biocontrol trait, we were motivated to explore the possible anti-fungal properties of the B. subtilis natto strain. We show that B. subtilis natto can use complex fungal material as a carbon source for growth, and can effectively deconstruct fungal cell walls. We found degradation of fungal cell wall proteins, and showed that growth on a mix of peptides was very strong. We also found that intact fungal cell walls can induce the secretion of chitinases and proteases. Surprisingly, we could show that chitin, the bulk component of the fungal cell wall, does not permit successful growth of the natto strain or induce the secretion of chitinolytic enzymes, although these were produced during exposure to proteins or to complex fungal material. We have further shown that protease secretion is likely a constitutively enabled mechanism for nutrient scavenging by B. subtilis natto, as well as a potent tool for the degradation of fungal cell walls. Overall, our data highlight B. subtilis natto as a promising candidate for biocontrol products, with relevant behaviors that can be optimized by altering growth conditions. Whereas it is common for bacterial biocontrol products to be supplied with chitin or chitosan as a priming polysaccharide, our data indicate that this is not a useful approach with this particular bacterium, which should instead be supplied with either glucose or attenuated fungal material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA